像素数3648+46
像素尺寸8μm
光栅焦距500mm
刻线2700 条 /mm
线分辨率0.7407nm/mm
像素分辨率0.005926nm
谱线范围130-800nm
众所周知,PMT直读光谱仪器是直读光谱仪中精度的分析仪器。占据了直读光谱仪的市场,但它的缺点是通道数量的限制,在应用过程中,增加通道困难,PMT直读光谱仪器的核心元件是PMT。
PMT直读光谱仪器光电倍增管
光电倍增管(PMT)是一种具有较高灵敏度和**快时间响应的光探测器件。但当材料复杂,检查的基体和元素都较多,对PMT直读光谱仪将是一个挑战,由于PMT光谱仪只能布置60个通道(虽然部分厂家号称可以布置更多的通道,但实际应用很少,并且会在抗干扰方面做出牺牲),而从实际应用看,当通道数**过55个小时,已经很难布置,并且各管子间会产生严重的互相干扰,使PMT的检出能力还不如CCD。
除了这一点,PMT光谱仪庞大的体型也代表了需要有一个适宜的场地,不能随意的移动。这确实是PMT光谱仪器的一个重大缺陷,当然更重要的是价格,价格是市场经济的晴雨表,这导致中端市场被CCD探测器**,低端市场被CMOS探测器**。
PMT直读光谱仪器虽然拥有众多的优势与精度,但是因为它的成本和应用范围限制,无法普及,正占据的直读光谱仪分析市场,选购直读光谱仪需要看自身的要求,千万不能只看一个数据就决定了,而应该全面的去了解选择
所有直读光谱仪都可以达到ppm级的精度吗?
直读的线是小于100ppm,也就是达到小数点后三位,0.001,的元素0.01%或以上可以出元素含量,可以精度为万分之一。并不是所有直读光谱仪的限都是一样的,不同厂家不同机型所达到的精度不同。
光谱分析是根据物质的光谱来鉴别物质,确定它的化学组成和相对含量,是一种灵敏快速的分析方法。生产过程的各个环节中,为了把控质量,保证成品符合出厂和验收要求,都离不开实时的化学成分。
直读光谱仪原理
直读光谱仪原理是样品经过电弧或火花,每种元素发射光谱谱线强度正比于样品中该元素含量,通过发射光谱强度的能量大小来分析各元素的含量。
原子发射光谱分析所采用的原理是用电弧(或火花)的高温使样品中各元素从固态直接汽化放电激发成原子蒸汽,当物质受到外界能量(电能和热能)的作用时,核外电子就跃迁到高能级,处于高能态(激发态)电子是不稳定的,激发态原子可存在的时间约为10-8秒,它从高能态跃迁到基态,或较低能态时,把多余的能量以光的形式释放出来。激发而发射出各元素的特征波长,因为每一种元素的基态是不相同的,激发态也是不一样的,所以发射的光子是不一致的,也就是波长不相同的。
依据波长可以决定是哪一种元素,这就是光谱的定性分析。另一方面谱线的强度是由发射该谱线的光子数目来决定的,光子数目多则强度大,反之则弱,而光子的数目又和处于基态的。
用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,射入各自的感光器件,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印各元素的百分含量。
光电直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不一致,存在一定误差,并且受诸多因素影响,有的材料本身含量就很低。有下面几种情况,在时可能产生误差。
,标样对光谱仪结果精度的影响,标样和试样的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变。
*二,标样与试样的物理性能不完全相同时,激发特征谱线会有差别从而产生系统误差。
*三,浇注的钢样经过退火,淬火,回火,热轧,锻压状态的钢样金属组织结构不相同时,测出的数据会有差别。
*四,熔炼过程中加入脱氧剂,去硫磷剂,混入未知合金元素,引起未知元素谱线的重叠干扰。
*五,样品的元素分布不均匀,导致分析结果不同。
以上几点是直读光谱仪精度产生误差的原因,若能避免,光谱仪的使用会更加方便。
自古以来,人们都有一个毛病,非要分出个子丑寅卯,非左即右。在光谱仪行业,也存在着:器推陈出新,更新换代,CCD定能取代PMT,COMS完败CCD的论调。
器作为光谱仪的核心部件,其技术的发展进步往往**着光谱仪的发展。电荷耦合元件(CCD)技术的应用是光电直读光谱仪的一个技术发展方向,采用CCD将会降低光电直读光谱仪的生产成本及减小仪器体积。其次CCD的优点是全谱,可以很方便地增加元素的种类。此外,CCD具有良好稳定性和较长的使用寿命,CCD型光电直读光谱仪可以实现激发样品时自动完成波长校准,不再需要定期进行校准,采用CCD技术可实现模块化、易于校准、抗振动。
当年PMT还是主流,仪器笨大。因为伊始购置仪器的时候对这方面不是很懂,初始只为了铝基材质,然后随着工作的深入,需要铁基的时候,厂家说加费用,要拆机装通道。“EXCUSE ME?”。
现在不比当年,运用CCD技术的仪器已然占据大部分市场。但,CCD又真的能取代PMT的地位么?
和传统的光电倍增管(PMT)技术相比,CCD发展较晚,作为新型器件,还存在一定的局限性。首先CCD没法如PMT那样每个通道都做优化。其次,CCD在应用中为了降低暗电流需要降温,这与光学系统需要恒温相矛盾。CCD目前还无法应用一些高速采样技术,因而在痕量元素分析方面性能不及PMT。CCD的信噪比不如PMT,其次如何保证多块CCD的一致性,以及处理多块CCD之间的接收空白区,也是一个问题。此外,当前CCD技术已经可以满足中端分析应用水平,但在短波元素分析、低含量元素分析、短期分析精度和长期精度方面和PMT还是有差距。
钢研纳克是中国钢研科技集团有限公司的全资子公司,中国钢研是直接管辖的企业,从事金属材料技术的研究、开发和应用的创新型企业。钢研纳克主营业务为第三方服务、分析仪器、标准物质 / 标准样品、能力验证服务、腐蚀防护工程与产品,以及其他延伸服务。公司主要面向钢铁、冶金、有色、机械、航空航天、高铁、核电、汽车、新材料、环境、食品、石化等领域提供设备及服务。
钢研纳克致力于成为中国金属材料行业的技术。公司是国内钢铁行业的,也是国内金属材料领域业务门类齐全、综合实力的测试研究之一。拥有“国家钢铁材料测试中心”、“国家钢铁产品质量监督检验中心”、“国家冶金工业钢材无损中心”三个中心和“国家新材料测试评价平台——钢铁行业中心”、“金属新材料与表征装备国家地方联合工程实验室”、“工业(钢)
产品质量控制和技术评价实验室”三个科技创新平台。公司在高速铁路、商用飞机、航空航天工程、核电工业以及北京等国家重大工程、重点项目中承担了材料等攻坚任务。
钢研纳克一直重视发现、培养、集聚科研人才,在分析测试领域已产生了两位中国科学院院士和一位中国工程院院士。目前公司拥有一支以科学家王海舟院士为首的具有国际竞争力的科研和技术服务团队。公司拥有教授级 22 人、 108 人。公司拥有 121 项(其中发明 60 项),拥有软件著作权 36 项。公司承担了多项国家重大课题,近五年承担的国家科学技术部、工业和信息化部、、中国工程院及国家自然科学基金委等项目 26 项。同时,火花光谱技术及其产品多次获得、省部级重项,国家科学技术进步奖二等奖(金属原位分析仪)、山东省科学技术进步奖一等奖、全国稀土标准化技术会技术标准奖一等奖、中国仪器仪表行业协会自主创新金奖、国家知识产权局中国奖等。公司先后与 3 家光谱制造商开展合作,长达 20 余年,一直追踪国际技术,研发和应用基础雄厚。
钢研纳克火花光谱仪凭借的光学系统设计、不断优化的结构设计、简便易学的用户界面、高精度和准确度以及完备及时的售后服务,获得了广大用户的认可,在中国累计销量** 4000 台。
http://xjr003.cn.b2b168.com