分析精度1ppm或1%
分析灵敏度0.01ppm
脉冲炉7.5KVA
较高温**3000℃
样品称重一般为1g
分析时间:一般为3分钟
铜制品
有必要仔细铜制品的生产流程,以使产品质量符合要求,避免报废。因此需要的测定从原材料到成品的生产过程中氧以及氢的含量。纳克ONH配有两个立的红外吸收池,可准确测定原材料中的高氧含量和无氧铜中的低氧含量,其低运维成本支持不断增长的分析需求。
氧氮分析仪检出限
氧含量测定的前提是要求空白低且稳定。 氧空白值主要是由石墨坩埚、 助熔剂、 载气以及炉膛空白等引起的。在4. 5KW 的分析功率下, 使用高纯免洗镍囊进行测定。 实验结果表明, 氧空白值是 0. 0030% , 标准偏差为 0. 000 1% 。 以空白标准偏差的 3 倍计算出氧的检出限为 0. 000 3% , 以空白标准偏差的 10 倍计算出氧的测定下限为 0. 001% 。
脉冲熔融-红外热导法测定氮化硅中的氧和氮
氮化硅,是一种重要的结构陶瓷材料。它是一种超硬物质,本身具有润滑性,并且耐磨损,为原子晶体;高温时抗氧化。而且它还能抵抗冷热冲击,在空气中加热到1000℃以上,急剧冷却再急剧加热,也不会碎裂。正是由于氮化硅陶瓷具有如此优异的特性,人们常常利用它来制造轴承、气轮机叶片、机械密封环、性模具等机械构件。如果用耐高温而且不易传热的氮化硅陶瓷来制造发动机部件的受热面,不仅可以提高柴油机质量,节省燃料,而且能够提高热效率。
采用氮化硅纯物质为参考物质,使用纳克ONH-3000固有的操作软件中的线性拟合程序可以建立氧、氮元素的工作曲线,通过分析氮化硅中的氧和氮,获得了很好的重复性和再现性。
固体中氮分析原理:钢中的杂质氮是在冶炼、加工等过程中由原材料及气氛中吸入、残留于钢中造成的。在一定情况下,氮也作为一种重要的合金元素从中间合金或用渗入的方式加入。氮在钢中的含量因冶炼方式、热处理制度和钢种的合金成份而变动,一般为 0.001%-0.50%,若经氮化或氰化处理,钢件表层的氮量可达 1%-6%。钢中的氮绝大部分是与合金元素形成氮化物或碳氮化物,部分以原子状态固溶于钢中,较少数情况下,氮以分子状态夹杂于气泡中或吸附在钢的表面。氮是一种形成稳定奥氏体能力很强的元素,可在不降低塑性的前提下提高钢的硬度、强度和耐腐蚀性。氮与铬、钨、钼等元素形成弥散稳定的氮化物后将较度地提高钢的蠕变和持久强度。对钢件表面渗氮处理得到高度弥散的氮化物层,可获得良好的综合力学性能。氮还影响钢的电磁性能。如在硅钢中,含有氮化铝将导致矫顽力和导磁率降低,但利用硫化锰和氮化铝的有利夹杂,可以稳定地获得大晶粒的高取向组织和高磁感的冷轧硅钢片。氮对钢液有不利影响,如使低碳钢在提高强度和硬度的同时韧性降低,缺口敏感性增加,并产生兰脆现象同时,当氮含量较高时将使钢的宏观组织疏松,甚至产生气泡,使热或冷的变形加工发生困难。因此,对钢中氮进行测定和了解,为控制冶炼和加工工艺提供了技术参数,具有重要的意义。自从六十年代初 A.M.Baccemah 等人将脉冲加热技术应用于金属中气体分析以来,这种方法得到了突飞猛进的发展,利用该技术制成的气体分析仪不断完善并发展,逐步趋于智能化,简便化。越来越多的实验室都选用仪器来完成样品的分析,避开化学法中配制溶液、选择溶液等复杂操作。目前高温合金、生铁及铸铁、金属功能材料等金属中氮的均采用脉冲加热惰性气体熔融热导法。脉冲加热惰性气体熔融热导法(JISG1228-86, ISO10720:1997)适用于钢铁中全范围氮的测定。试样在惰性气流中熔融,其氮被还原释放出来,由惰性载气送入热导池中,测量热导率的变化。
http://xjr003.cn.b2b168.com