温度控制<0.1℃
器大面积CCD器
测试范围165nm-950nm
光源类型固态光源
品牌钢研纳克
国产单道扫描ICP-AES发射光谱仪直接测定镨钕镝合金中的非稀土杂质
摘要:通过选择合适的分析谱线和基体匹配与背景扣除法进行干扰校正,研究建立了国产单道扫描ICP光谱仪直接测定镨钕镝合金中的非稀土元素Al、Ca、Fe、Mg和Si的方法。结果表明,应用本法对客户的三个样品进行,测定结果与参考值一致。本法可用于镨钕镝合金中非稀土杂质元素的。
关键词:ICP-AES;镨钕镝合金;非稀土元素
镨钕镝合金是高性能钕铁硼材料的主要原料之一,准确测定其中各元素的含量十分必要。ICP-AES以其检出限低,精密度好,动态范围宽,分析速度快等优点在分析领域已得到了广泛的应用。本文研究使用国产单道扫描ICP-AES发射光谱仪直接测定镨钕镝合金中的Al、Ca、Fe、Mg和Si等非稀土元素的方法,并对客户委托的样品进行了测试,获得满意结果,本法具有一定的实用价值。
1 实验部分
1.1 仪器及参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克技术有限公司);高纯氩(纯度≥99.999%),光栅为3600条/mm。参数设置:功率1.15 kW,冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min,蠕动泵泵速20 rpm,观测高度距功率圈上方12 mm,同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
1.2 试剂
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂;硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;Al、Ca、Fe、和Mg的标准溶液质量浓度均为1000 µg/ml,Si的标准溶液质量浓度均为500 µg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
称取2.5 g试料,精确至0.0001 g。置于250 ml烧杯中,加20 ml王水,低温加热至溶解完全,冷却至室温后移入100 ml容量瓶中,定容,混匀。再从上述100 ml容量瓶中准确移取10.00 ml溶液于50 ml容量瓶中,稀释至刻度,摇匀,待测。随同试料做空白试验。
2 结果与讨论
2.1分析谱线的选择
在谱线选择上要充分考虑其光谱干扰,对所选谱线进行轮廓扫描的方法,即用纯试剂找到被测元素的峰位,在此峰位及其附近扫描实际样品,观察其他元素在该谱线附近的谱线位置和强度情况,选择在该谱线附近其他元素无谱峰或通过背景扣除可以消除的谱线,终确定合适的谱线见表1。
表1 推荐的分析线
元素 分析线/nm
Al 237.312
Ca 393.366
Fe 259.940
Mg 279.553; 280.271
Si 251.612
2.2 校准曲线线性及精密度试验
根据被测元素的含量范围配制系列标准溶液,各待测元素的线性相关系数见表2。此外,对样品2进行6次平行测定,相对标准偏差也列于表2。
表2 各待测元素线性相关性及精密度
元素 相关系数 RSD/%(n=6)
Al 1.0000 1.94
Ca 0.9998 1.52
Fe 0.9995 2.31
Mg 0.9999 2.42
Si 0.9996 1.67
2.3 实际样品测试及结果对照
采用所建立的方法对客户委托的实际样品进行了测试,为检验测试结果的准确性,将3个客户委托的样品的结果与其他方法提供的测试结果进行了对照,结果及比对见表4。结果表明,采用本法的结果与其他方法提供的结果基本一致。
表3 本法测定结果与其他方法的参考值比对
样品 方法/参考值 含量,w/%
Al Ca Fe Mg Si
1号样品 本法 0.123 <0.050 0.140 0.185 0.032
参考值 0.149 <0.050 0.155 0.176 0.034
2号样品 本法 0.204 0.061 0.444 0.036 0.053
参考值 0.234 0.063 0.447 0.035 0.052
3号样品 本法 0.424 0.081 0.612 0.048 0.308
参考值 0.425 0.079 0.608 0.048 0.302
3 结论
以上试验结果表明,应用国产ICP-AES发射光谱仪测定镨钕镝合金中的非稀土元素是可行的。该方法简便、快速、结果准确,精密度好,完全满足定镨钕镝合金产品的要求。
电感耦等离子体原子发射光谱仪(ICP—AES)主要用于液体试样(包括经化学处理能转变成溶液的固体试样)中金属元素和部分非金属元素的定量分析。将样品溶液以气溶胶形式导入等离子体炬焰中,样品被蒸发和激发,发射出所含元素的特征波长的光。经分光系统分光后,其谱线强度由光电元件接受并转变为电信号而被记录。根据元素浓度与谱线强度的关系,测定样品中各相应元素的含量。
应用领域
可用于地质、冶金、稀土及磁材料、环境、医药卫生、生物、海洋、石油、化工新型材料、核工业、农业、食品商检、水质等各领域及学科的样品分析。可以快速、准确地从微量到常量约70种元素。
仪器原理 Principle
Plasma电感耦合等离子体发射光谱仪系统由光谱仪主机和一套PC机组成。整个仪器可以分为进样系统、高频发生系统、分光系统、控制与数据处理系统。
其工作原理是:待测试样经喷雾器形成气溶胶进入石英炬管等离子体中心通道,经过光源加热激发所辐射出光,经光栅衍射分光,通过步进电机转动光栅,将元素的特征谱线准确定位于出口狭缝处,光电倍增管将该谱线光强转变为光电流,再经电路处理,由计算机进行数据处理来确定元素的含量。
)分析流程全自动化控制,实现软件点火、气路智能控制功能;
2) 输出功率自动匹配调谐,功率参数程序设定;
3) 优良的光学系统,先进的控制系统,保证峰位定位准确,信背比优良;
4)较小的基体效应;
5)测量范围宽, **微量到常量的分析,动态线性范围5—6个数量级;
6)检出限低,大多数元素的检出限可达ppb级;
7)良好的测量精度,稳定性相对标准偏差RSD≤1.5%(5ppm),优于国家A级标准(JJG768-2005);
8)功能强大、友好的人机界面分析软件,可在测定过程中,进行数据处理,方法编制和结果分析,是真正的多任务工作软件;该软件数据处理功能强大,提供了多种方法,如内标校正、IECS和QC监测功能等,可获得的背景扣除点以消除干扰;对输出数据可直接打印或自动生成Excel格式的结果报告.
技术参数 Parameters
分光系统
光路形式:Czerny-Turner型
光栅类型:离子刻蚀全息平面光栅
刻线密度:3600g/mm
步进电机小驱动步距:0.0004n
光室恒温:(30± 0.2)℃
分辨率:不大于0.008nm
出射、入射狭缝宽度:20μm
光室冲氩或氮(流量可调)
高频发生器
震荡频率:40.68MHz
震荡类型:自激式
功率稳定度:0.1%(长期25 ℃典型值)
工作线圈:3圈空心铜管外套聚四氟乙烯管
进样系统
进样方式:蠕动泵进样
配有多种雾室(旋流雾室、双筒雾室和耐氢氟酸雾室)
雾化器:同心雾化器
工作环境
仪器室内无腐蚀性气体;
空中的尘埃粒子须保持。
室内温度18℃~26℃;
室温应达到稳定状态,
温度变化率应小于1℃/h
相对湿度不大于70%。
尺寸和重量
仪器室内无腐蚀性气体;
空中的尘埃粒子须保持。
室内温度18℃~26℃;
室温应达到稳定状态,
温度变化率应小于1℃/h
相对湿度不大于70%。
金属镧中铈、镨、钕、镝的ICP-AES法测定与谱线选择
根据GB/T 15677-2010 金属镧的产品标准,不同的牌号金属镧(14030,14025,14020)的稀土杂质分别不得多于0.1%,0.5%,1%。因此需要对金属镧中的稀土杂质元素进行定量分析。由于稀土元素之间的光谱干扰比较严重,因此选择合适的谱线则尤为重要。本文通过对plasma 1000/2000轴向观测和安捷伦700系列的仪器进行比较,选择合适的分析仪器,合适的分析谱线,及测定其检出限及下限。
1 实验部分
1.1 仪器参数及试剂
本次试验采用plasma 1000/2000水平/安捷伦700系列对样品进行试验 ,仪器工作参数见表1-表3.
表1 plasma 2000(水平)测定参数
工作条件 参数
冷却气流量L/min 15
辅助气流量L/min 0.5
载气流量L/min 0.7
射频功率W 1250
曝光时间s 8
观测方向 轴向
氩气纯度 >99.999%
表2 plasma 1000仪器测定参数
工作条件 参数
冷却气流量L/min 18
辅助气流量L/min 0.5
载气流量L/min 0.7
射频功率W 1200
观测方向 径向
氩气纯度 >99.999%
表3 安捷伦700系列测定参数
工作条件 参数
冷却气流量L/min 15
辅助气流量L/min 1.5
载气流量L/min 0.7
射频功率W 1200
观测方向 径向
氩气纯度 >99.999%
1.2 样品处理
称取1g样品,缓慢滴入10ml盐酸,溶解样品,而后补加10ml盐酸,放在加热板上加热20min。
La基体溶解:称取10g氧化镧(La/REO>99.999%)于250ml烧杯中,加入10ml水,缓慢滴入盐酸(反应较为剧烈,滴入时小心)。直至反应完全,放在加热板上加热20min,冷却后转入100ml容量瓶中,定容摇匀。此溶液1ml中含有0.1g氧化镧。
2 结果与讨论
2.1 分析谱线的选择
稀土元素的谱线较为复杂,因此谱线选择尤其重要。谱线选择的时候,需要充分考虑谱线间的干扰。Plasma 1000的谱线图见图1-图9。其中左边的图为Plasma 1000谱图,中间为Plasma 2000谱图,右边谱图为安捷伦700系列谱图。通过比较三种仪器的分析谱图发现,plasma1000的分辨率相对较好,优于plasma 2000及安捷伦700系列。因此选用plasma 1000测定以下元素。同时三种仪器的可选的分析谱线见表4。
表4 谱线选择(红色为推荐谱线)
元素 Plasma1000谱线 Plasma2000(水平)谱线 安捷伦700系列
Ce 413.380/399.924/418.659/446.021 413.380/418.660 446.021/418.659
Nd 406.109/401.225/430.357 --- 430.357
Pr 400.869 --- 400.869
Dy 353.170 353.170 340.780/353.171
图1 镧基体中Ce413.380峰型图
图2 镧基体中Ce399.924峰型图
图3 镧基体中Ce446.021峰型图
图4 镧基体中Ce418.659峰型图
图5 镧基体中Pr400.869
图6 镧基体中Nd406.109
图7 镧基体中Nd401.225
图8 镧基体中Nd430.357
图9 镧基体中Dy353.170
2.2 实际样品的测定
2.2.1溶液系列的配置
取4个100 mL容量瓶,分别加入各待测元素的标准溶液,补加10 mL盐酸,定容,摇匀。此标准溶液系列中各元素质量浓度相当于样品中各元素含量见表5。实际样品按照本文方法进行分析。
表5 标准溶液系列中各元素含量 %
元素 Ce Pr Nd Dy
空白 La基体+0 La基体+0 La基体+0 La基体+0
标准1 La基体+0.005 La基体+0.005 La基体+0.005 La基体+0.005
标准2 La基体+0.01 La基体+0.01 La基体+0.01 La基体+0.01
标准3 La基体+0.05 La基体+0.05 La基体+0.05 La基体+0.05
2.2.2校准曲线和检出限
测定plasma1000的检出限及测定下限。按照仪器设定的工作条件对标准溶液系列进行测定。在仪器工作条件下对标准溶液系列的空白溶液连续测定11次,以3倍标准偏差计算方法中各待测元素检出限,以30倍标准偏差计算方法中各待测元素的测定下限,结果见表5。
表5线性回归方程和检出限
元素 线性范围
/(%) 线性回归方程 相关系数 检出限
/(%) 测定下限
(%)
Ce 0.005-0.05 Y=677070x+683.59 0.9999 0.0003 0.003
Pr 0.005-0.05 Y=267204x-147.57 0.9999 0.0009 0.009
Nd 0.005-0.05 Y=819298x+1793 0.9999 0.0003 0.003
Dy 0.005-0.05 Y=5125968x-1109.7 0.9999 0.0003 0.003
2.2.3 测定结果
实际样品按照本文方法进行分析,其结果见表6.
表6 实际样品分析结果 %
元素 ICP-AES
Ce 0.0422
Pr 0.0034
Nd 0.0078
Dy <0.001
3 结论
本文通过对plasma 1000/2000轴向观测和安捷伦700系列的仪器进行比较,选择合适的分析仪器,认为plasma1000的分辨率相对较好,优于plasma 2000及安捷伦700系列合适的分析谱线, plasma 1000的测定下限在0.003%-0.009%之间。可以为金属镧中的稀土元素提供依据。
ICP电感耦合等离子发射光谱原理
电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电,是一个目前用于原子发射光谱,具有良好的蒸发-原子化-激发-电离性能的光谱光源。
1.ICP原理
电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电,是一个目前用于原子发射光谱,具有良好的蒸发-原子化-激发-电离性能的光谱光源。
其具有环形结构、温度高、电子密度高、惰性气氛等特点,用它作为激发光源具有检出限低、线性范围广、电离和化学干扰少、准确度和精密度高等分析性能。
在测量过程中,样品由载气引入雾化室雾化后,以气溶胶形式进入等离子体的中心通道,在高温惰性气氛中被充分蒸发、原子化、电离和激发,使所含元素发射各自的特征谱线。根据各元素特征谱线的存在与否,定性分析样品中元素的存在与否;由特征谱线的强度,定量分析相应元素的含量。ICP电离源一般配有MS器或者OES(AES)器。这两者都可以同时分析多个样品、精度高、准确度好、应用范围广(图1)。由于器的不同,这两种手段在用途上有些不同:ICP-OES(AES)高灵敏度,低限(ppm级),较宽的动态线性范围和多元素同时分析,通常用于痕量及部分常量元素定性定量分析,应用的行业范围也较广;ICP-MS具有元素、同位素、形态分析等定性定量分析能力,下限水平优于ICP-OES(ppb级)。由于其方便、快捷、精度高、准确度高,在配方分析中都有着广泛的应用。
图1.ICP-MS(OES/AES)的应用范围
试样在分析前需要进行前处理,常见的试样分解方法有:
稀释法:用高纯去离子水或者无机酸(HNO3)稀释至合适的浓度进行测试。
湿分解法:用单一酸(HF, HNO3, HCl等)或者混酸(HNO3/HClO4/HF强氧化体系,HNO3/H2SO4/HClO4强氧化体系,HNO3/HCl体系)。
高压分解法:可以提高难分解体系的分解,污染少,酸分解效率高,操作简单。
微波消解法:HNO3微波消解;HNO3/H2O2微波消解;HNO3/H2O2/HF微波消解,污染小、元素损失小、快速。
熔融分解法:可以分为碱金属熔法(使用碳酸盐、氢氧化物、过氧化物或硼酸盐等);酸熔法(硫氰酸盐和焦硫酸盐,酸性氟化物和氟硼酸盐,硼酸盐和氧化硼)以及还原熔法(适用于贵金属试金法)。
2.ICP在配方分析中常见方法应用举例
一种金属焊药的定性、定量分析
样品分析前,首先是对样品的前处理,该种金属焊药中含有金属,常用的为王水法处理(硝酸/硫酸=1/3)。处理后样品的水溶液使用ICP-OES进行测量,对得到的结果进行分析、计算,可以得到该样品中含有锡92%、银5%、钛3%。
一种磷化液中金属成分及含量分析
样品为液体试样,因此前处理比较复杂,通过我们工程师细致准确的处理,可以得到样品水溶液,进行ICP-MS测试。实验结果显示,样品中含有金属Zn,Cu以及Na,同时含有一定量的P。结合其他测试(XRD,阴离子色谱等)可以定性、定量出样品中含有磷酸41%,27.5%,硝酸锌30%,碳酸铜3%,氟化钠2%。
-/gbahabd/-
http://xjr003.cn.b2b168.com