国产ICP厂家 icp光谱仪参数
  • 国产ICP厂家 icp光谱仪参数
  • 国产ICP厂家 icp光谱仪参数
  • 国产ICP厂家 icp光谱仪参数

产品描述

光源固态光源 CCD器 光室温度38摄氏度 光学系统中阶梯光栅与棱镜交叉色散结构 进样系统可拆卸式或一体式炬管 生产厂家钢研纳克
钢研纳克微波消解-ICP-AES法测定塑料中Pb、Hg、Cd、Cr
摘要: 研究采用微波消解法进行溶样、ICP-AES测定塑料中Pb、Hg、Cd和Cr含量的方法。选择了合适的分析谱线。结果表明,Pb、Hg、Cd、Cr的检出限分别为0.02mg/L、0.02mg/L、0.002mg/L、0.002mg/L,回收率为86%~107%。该方法适用于塑料中Pb、Hg、Cd和Cr含量的快速分析。
关键词:微波消解;ICP-AES;塑料;Pb;Hg;Cd;Cr
塑料已经广泛地应用到各行各业,与人们的生活息息相关。然而由于塑料的生产工艺等原因不可避免地使用了有害的重金属,其中的Pb、Hg、Cd、Cr等重金属的危害已引起了**的重视,欧盟已各种严厉的政策、法令来限制塑料中Pb和Cd的使用,如RoHS指令、包装指令、玩具指令等。因此, 许多出口产品中的塑料部件均需要进行Pb、Hg、Cd、Cr含量的测定。
相对于传统的湿式消解法和马弗炉高温灰化法, 微波消解作为一种较新的样品处理技术具有一系列的优点:1)加热快、升温高、消解能力强,大大缩短了溶样时间;2)消耗酸溶剂少,空白值低;3)避免了挥发损失和样品玷污,回收率高,提高了分析的准确度和精密度。
相对于传统仪器原子吸收法, ICP-AES以其检出限低,精密度好,动态范围宽,分析速度快等优点在塑料制品分析领域的应用已有报道 [1-6]。本文研究了使用国产单道扫描ICP光谱仪测定塑料中的Pb、Hg、Cd、Cr,结果令人满意。
1 实验部分
1.1 仪器及参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克技术有限公司);高纯氩(纯度≥99.999%),光栅为3600条/mm。参数设置:功率1.15 Kw;冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min;蠕动泵泵速20 rpm;观测高度距功率圈上方12 mm;同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
EXCEL 全功能型微波化学工作平台(上海乞尧)。
1.2 试剂
硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;过氧化氢,ρ≈1.13g/ml,优级纯,北京化工厂;Pb、Hg、Cd、Cr的标准溶液质量浓度均为1000 µg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
称取已粉碎的塑料试样0.1 g (精确至0.0001g) 于聚四氟乙烯微波消解罐中, 加入10 mL HNO3、2mL H2O2溶液, 按照设定的消解程序(如表1所示)进行微波消解, 为避免反应过于剧烈, 采用程序升温的方法进行消解。消解完毕后,转移定容至50 mL, 待测。随同做试样空白试验。
表1 样品微波消解程序
升温程序 压力/MPa 温度/℃ 保持时间/min
2 结果与讨论
2.1 分析谱线的选择
对于同一种元素, ICP-AES 可以有多条谱线进行,但是由于基体和其他元素的干扰,并不是所有的谱线都适用。进行光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选定灵敏度适宜、谱线周围背景低、且无其他元素明显干扰的谱线作为元素的分析线,结果见表2。
表2 各元素分析线
2.2 方法的检出限
以空白溶液测定10次的标准偏差的3倍所对应的浓度作为检出限。各元素的检出限见下表3。由表可见,各元素的检出限均较低,可以满足塑料产品的日常要求。
表3 元素的检出限
元素 Pb Hg Cd Cr
检出限/(mg/L) 0.02 0.02 0.002 0.002
2.3 实际样品的测定
对实际塑料样品按照本文方法进行分析,并将测定结果与相应的参考值进行比对,结果表明,各元素的测试结果与参考值基本一致。
表4 测定结果与参考值对比
样品 元素 测定结果w/% 参考值w/%
2.4加标回收试验
按照选定的ICP工作条件和微波消解程序, 在样品中分别加入Pb、Hg、Cd、Cr混标溶液进行加标回收试验, 回收试验结果列于表5。由表5可知, 待测元素Pb、Hg、Cd、Cr的加标回收率在86%~107%, 表明本方法准确可靠。
表5 方法的加标回收
元素 本底值 加标量 测定均值 回收率
/(mg /L) /(mg /L) /(mg /L) /%
3 结论
对塑料进行微波消解前处理, 采用高灵敏度的单道扫描型ICP- AES成功测定了其中Pb、Hg、Cd、Cr含量,此法简便、准确, 适用于塑料中Pb、Hg、Cd、Cr的快速测定。
国产ICP厂家
钢研纳克ICP光谱仪测定污泥中铝、钙、铜、铁、镁、锌等元素
(钢研纳克技术有限公司,北京 100081)
摘要:污泥中除了含有大量丰富的**物及氮、磷等营养元素之外,还含有很多难以降解的有金属元素。如果处理不当将会造成更严重的二次污染。采用在盐酸,硝酸,氢氟酸及双氧水条件下对样品进行微波消解,而后高氯酸冒烟处理样品的方式,采用电感耦合等离子体原子发射光谱对污泥中铝、钙、铜、铁、镁、锌等元素进行。选择合适的分析谱线,标准曲线线性系数大于0.9999。
关键词:
随着城市污水处理量的不断提高,其处理过程中污泥的总量也在不断的增加。污泥中在含有大量丰富的**物及氮、磷等营养元素之外,还含有很多难以降解的有毒重金属元素。如果处理不当将会造成更严重的二次污染。因此对污泥进行监测尤为重要。
目前国内外多采用传统干法或者湿法样品消解技术并以原子吸收光谱法进行测量,也出现了使用不同酸进行微波消解样品使用原子吸收光谱法测定污泥中金属元素。但传统技术用酸多,金属元素易挥发,耗时长且操作复杂,采用原子吸收光谱法易产生基体干扰且不能多元素同时测定。ICP-AES作为一种快速定量分析的手段,检出限低,精密度好,动态范围宽,分析速度快,可快速实现对污泥中铝、钙、铜、铁、镁、锌等元素的。
1 实验部分
1.1 仪器参数及试剂
Plasma 2000 全谱型电感耦合等离子体光谱仪(钢研纳克技术有限公司)。
参数设置见表1
表1 仪器测定参数
工作条件 参数
等离子体流量L/min 15
辅助气流量L/min 0.5
载气流量L/min 0.7
射频功率W 1250
曝光时间s 8
观测方向 径向
氩气纯度 >99.999%
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂
硝酸,ρ≈1.42g/ml,优级纯,北京化工厂
高氯酸,ρ≈1.76g/ml,优级纯,北京化工厂
氢氟酸,优级纯。
双氧水,优级纯。
1.2 样品处理
称取0.1 g样品,放置于微波消解罐中,加入6ml硝酸,2ml盐酸,3ml氢氟酸,1ml过氧化氢,放入微波消解仪中进行消解,消解条件见表1。冷却后取出,使用少量水将样品转移至聚四氟乙烯烧杯中,加入3ml高氯酸,冒烟至近干,取下冷却烧杯,加入5ml硝酸溶解残渣,冷却后定容至100ml容量瓶中,摇匀。 若有不溶物,干过滤。
2 结果与讨论
2.1 分析谱线的选择
对于同一种元素, ICP-AES 可以有多条谱线进行,但是由于基体和其他元素的干扰,并不是所有的谱线都适用。进行光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选其灵敏度适宜,谱线周围背景低,且无其他元素明显干扰的谱线作为元素的分析线。具体谱线见表2,选择依据见图1-图6.
表2 谱线选择
元素 Al Ca Cu Fe Mg Zn
谱线 308.215 317.933 327.396 259.940 285.213 213.856
图1 Al308.21谱线与样品谱图
图2 Ca标准曲线与样品谱图
图3 Cu标准曲线与样品谱图
图4 Fe标准曲线与样品谱图
图5 Mg标准曲线与样品谱图
图6 Zn标准曲线与样品谱图
2.2 实际样品的测定
2.2.1校准曲线
实际样品按照本文方法进行分析,校准曲线线性相关系数等见表3,校准曲线如图7-图12.
表3 各元素的线性回归方程及线性范围
元素 线性范围/(g/ml) 线性回归方程 相关系数
Al 10-50 y= 1429+x+229.95 0.9999
Ca 5-20 y= 3983x+788 0.9999
Cu 0.5-1.5 y= 6575x-83 0.9999
Fe 5-30 y= 3352.6x+24 0.9999
Mg 2-6 y= 17822.97x+9513 0.9999
0.5-3 y= 3263.33x+35 0.9999
图7 Al校准曲线
图8 Ca校准曲线
图9 Cu校准曲线
图10 Fe校准曲线
图11 Mg校准曲线
图12 Zn校准曲线
2.2.2 测定结果
实际样品按照本文方法进行分析,其结果见表4。满足客户要求。
表4 实际样品分析结果(mg/g)
样品名称 ICP-AES 客户结果
Al 68.02 68.07
Ca 17.52 17.31
Cu 1.583 1.604
Fe 35.57 35.75
Mg 5.821 5.861
Zn 2.442 2.342
3 结论
本方法ICP-AES方法测定污泥中铝、钙、铜、铁、镁、锌,方法简单,选用了合适的谱线,其线性相关系数大于0.9999,适用于污泥中铝、钙、铜、铁、镁、锌元素的。
国产ICP厂家
钢研纳克Plasma 2000ICP光谱仪测定车用三元汽车尾气催化剂中铂、铑、钯的含量
摘要: 采用电感耦合等离子体光谱法对汽车尾气催化转化器中贵金属铂、铑、钯的含量进行测定。优化了测定的条件,调节观测高度及载气流量,使得载气流量为0.46L/min。该方法适用于车用催化剂中贵金属元素铂、铑、钯的测定。
关键词:ICP-AES; 车用催化剂;贵金属元素
根据*共和共环境保护部的《机动车防治年报2014》,中国2013年的机动车保有量达到2.32亿辆,尾气排放已经成为我国空气污染的重要来源之一。汽车尾气催化剂能够有效的降低汽车尾气中污染物的排放量,从而达到改善大气环境质量,保护环境的效果。汽车尾气催化剂中的贵金属成分是有效的催化成分,其含量和负载情况是催化剂性能好坏的判断依据。
ICP-AES作为一种快速定量分析的手段,其分析速度快,具有较低的检出限,并且精密度良好,动态范围宽。本文研究了使用国产全谱扫描电感耦合等离子体发射光谱仪(plasma 2000)测定汽车尾气催化剂中贵金属元素铂、铑、钯的方法,取得了满意结果。
1 实验部分
1.1 仪器及参数
实验过程中ICP-AES Plasma 2000具体参数见表1
表1 钢研纳克plasma2000 ICP光谱仪器主要工作参数
仪器工作参数 设定值 仪器工作参数 设定值
射频功率/W 1150 辅助气流速/L·min-1 0.5
冷却气流速/L·min-1 15 蠕动泵转速/rpm 20
载气流速/L·min-1 0.5 进样时间/s 25
曝光时间/s 8 读数方式 峰面积
全功能型微波化学工作平台:上海市屹尧仪器科技发展有限公司。
1.2 试剂
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂;
硝酸,ρ≈1.42g/ml, 优级纯,北京化工厂;
氢氟酸,MOS级。
Pt、Rh、Pd的标准溶液,质量浓度均为1000 µg/ml,国家钢铁材料测试中心;
所有溶液用水均为二次去离子水。
1.3样品制备
由于汽车尾气催化剂为多孔状结构,无法直接进行测定,因此需要将样品破碎后进行小结处理。本实验中首先将催化剂完全破碎,粉末球磨成200目以下的粉末,而后使用四分法进行取样,样品待处理。图1是制备前的样品。 图2为制备后的样品
图1 车用催化剂制备前样品
图2 车用催化剂制备后样品
1.4 样品处理
称取0.5g试样于微波消解罐中,加入5ml王水,5mlHF,进行微波消解。而后转移至150ml的聚四氟乙烯烧杯中,在180℃下蒸干溶液,而后加入10ml王水,3mlHF,加热溶解,冷却后转移至50ml容量瓶中,定容摇匀,而后干过滤待测。微波消解条件如表2所示。
表2 微波消解条件
步骤 温度(℃) 压力(atm) 时间(min)
2 结果与讨论
2.1 样品溶解条件的选择与确定
车用催化剂的载体为堇青石,其化学成分为2MgO2·Al2O3·5SiO2,其中也可能包括一些其他杂质元素,基体较为复杂,溶解困难。因此实验过程中使用多种方法溶解样品,即加热板消解法,酸溶回渣法及微波消解法,终经过实验验证及分析,选择微波消解法作为消解方法。加热板消解法消解样品,是将样品放置于聚四氟乙烯烧杯中,加入王水及氢氟酸与高氯酸,回流及冒尽高氯酸烟,反复8次后定容过滤样品。但样品并未溶清,还存在大量的沉淀,而且耗时过长,其测定结果与标准样品比偏低。酸溶回渣是称取样品后进行酸化,而后将之过滤,滤渣放入马弗炉中在碱性条件下灼烧,保留滤液。而后将滤渣滤液合并后定容待测。酸溶回渣有以下问题,一是实验过程中使用到了铂金坩埚,因此车用催化剂中的铂元素无法测定,会引入新的干扰。二是实验过程复杂,时间长,同时并未完全溶解样品。三是其测定结果比标准样品值偏低。因此放弃此方法。使用微波消解法耗时短,过程简单,选用此方法。
2.2 分析谱线的选择
对于同一种元素,ICP-AES Plasma2000有多条谱线可供选择用于,但是由于基体的影响和其他元素对待测元素可能产生的干扰,需要对推荐的谱线进行干扰考察和选择。光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选其灵敏度适宜、谱线周围背景低且无其他元素明显干扰的谱线作为待测元素的分析线。此外,谱线选择时,应尽量将背景位置定位于基线平坦且无小峰的位置,同时左右背景的平均值尽可能与谱峰背景强度一致。谱线选择结果见表3。
表3 各元素分析线
元素/nm Pt Rh Pd
波长 265.945 343.488 229.651
2.3 载气流量的选择
使用Rh343.488nm为调节线,使用ICP-2000进行自动调节载气流量,其进步步速为0.1L,记录其强度时的载气流量,为0.46L/min。以此流量作为分析时使用的流量。并使用Rh343.488nm为调节线,进行矩管准直的调节。记录其强度处的位置。以此载气流量及位置测定元素值。
2.4 加标回收率
为评价方法精密度及准确度, 对3种样品(标1,跑1,圆1)中的贵金属元素铂。铑、钯进行了加标回收率试验,其余各元素的回收率均在94%-97%之间(结果见表4)。
表4 各元素加标回收率
分析元素 加入量/mg/g 实际值
/mg/g 检出量/ mg/g 回收率/ %
Pt 0.08 0 0.0753 94
Rh 0.4 0.23 0.6225 98
Pd 6 2.87 8.71 97
2.5 实际样品测定与标准值对比
使用索克定值样品进行分析,分析结果见表5,结果表明,各元素分析结果与标准样品参考值一致,说明此方法准确、可靠。
分析元素 Pt Rh Pd
标1测定值 0 0.236 5.05
标1标准值 0 0.255 4.85
标2测定值 0 0.254 12.41
标2标准值 0 0.252 12.35
3 结论
采用纳克公司生产的Plasma 2000 型全谱型扫描发射光谱仪测定车用催化剂中贵金属元素铂、铑、钯等元素,可一次性完成对多种元素的测定,适用于各级检验进行多批次、多项目产品的元素。
国产ICP厂家
ICP-AES法测定高碳铬铁渣中的硅、铝、钙、铬、镁
(钢研纳克技术有限公司)
摘要 通过控制碱熔的过程和酸化的酸度及炉温防止硅变成二氧化硅析出,利用纳克生产的Plasma1000成功测定了高碳铬铁渣中的硅、铝、钙、铬、镁, 此方法的测定结果与化学方法的测定结果基本一致,偏差分别为0.22(Al2O3)、0.03(CaO)、0.48(MgO)、SiO2(0.56)、0.01(Cr2O3);方法的重现性较好,8次平行测定的标准偏差分别为:0.77%(Al2O3)、3.57%(CaO)、 0.28%(MgO)、0.52%(SiO2)、1.83%(Cr2O3)。
关键词 ICP-AES;高碳铬铁渣;重现性
高碳铬铁渣中硅的测定传统方法一般都采用化学法,常用的高氯酸脱水重量法,该法准确度高,但方法繁琐、耗时。ICP-AES法测定硅的含量由于硅在前处理过程中*变成二氧化硅析出,从而使硅的测定结果偏低,因此,至今为止,还没有相关的ICP-AES法测定高含量硅的方法报道。炉渣中硅的含量一般很高,只能用碱熔才能溶解完全,碱熔后加酸煮清的过程中,很*析出固体二氧化硅从而使测定结果偏低。本实验应客户的要求,通过控制碱熔的过程和酸化的酸度及炉温,从而防止硅变成二氧化硅析出,采用纳克生产的Plasma1000成功测定了高碳铬铁渣中的硅、铝、钙、铬、镁。
1. 实验
1.1 仪器及参数
Plasma 1000 型顺序扫描发射光谱仪(纳克) , Czermy-Turner光学系统, 焦矩: 1000 mm,光栅有效面积110×110,光栅刻线: 3600 条/mm, 倒线色散率和分辨率: 0.22 nm/mm,0. 0066 nm,入射狭缝20 μm,出射狭缝20 μm。高频电源: 频率27. 12 MHz、入射功率1. 15 kW。工作气体: 氩气纯度> 99. 95%,冷却气15 L/min、等离子气1. 2 L/min、载气0.5 L/min,冲洗气3. 5 L/min,观察高度15.0 mm。
1.2 试剂及标准溶液
过氧化钠:分析纯;盐酸:优级纯。单元素标准溶液均为国家标准溶液,其中Si标准溶液为500 μg/mL,其余均为1 mg/mL。本实验所用水为去离子水。
1.3 试样处理
准确称取0.1000 g试样,放入底层铺有1.0 g过氧化钠的镍坩埚中,搅拌均匀,再在上面覆盖0.5 g过氧化钠,首先在电热炉上将样品加热至软化后放入400 ℃的马弗炉中加热30 min,取出后即刻放入900 ℃马弗炉中熔融10 min,取出,稍冷。加入1.0 g过氧化钠,再于800 ℃马弗炉中熔融5 min。熔融后的坩埚清洗干净外壁后置于500 mL聚四氟乙烯烧杯中,加入150 mL热水浸取出坩埚后,再加入1+1的盐酸50 mL,于250 ℃电热板上加热至溶液澄清,冷却后于250 mL塑料容量瓶定容。随同试样带试样空白。
1.4 标准曲线的配置
标准曲线的配置:对于Si、Mg元素,用水标和加过氧化钠的曲线,测试结果一样;对于Al、Ca、Cr,要求在六个塑料容量瓶中,加入与待测样同重量的镁打底,加酸溶解后加入过氧化钠1.0 g,盐酸(1+3)40 mL,电热炉上煮至无气泡后,再转移到100 mL容量瓶中,根据需要加入标液配置标准曲线。其中Al标准溶液的加入量分别为:0、1、2、3、4、5 mL,Ca、Cr标准溶液的加入量分别为0、0.25、1.0、2.0、3.0、5.0 mL,Si标准溶液的加入量为0、1、3、5、7、9 mL,Mg标准溶液的加入量分别为0、1、3、6、9、12 mL。
2. 结果与讨论
2.1过氧化钠的用量
过氧化钠的用量太多,会堵塞仪器,用量太少,则又会导致样品溶解不完全。本实验分别实验了1.5、2.0、2.5、3.0 g熔剂,结果见表2。结果表明,选用1.5 g时,样品基本溶解完全,但是浸取时不是很好浸取,硅*偏低。后选定2.5 g熔剂作为终的实验熔剂用量。
表2 熔剂量的选择
熔剂用量/g 1.5 2.0 2.5 3.0g
含量w/% Al2O3 16.12 16.20 16.18 16.19
CaO 1.87 1.92 1.91 1.92
MgO 42.31 42.58 42.61 42.78
SiO2 32.28 35.19 35.60 35.64
Cr2O3 2.18 2.15 2.14 2.21
2.2 熔样条件
过氧化钠熔样一般在800~850 ℃、15 min条件下就能熔解完全,但存在不太好浸取的缺点。如果分两次(即先加1.5 g熔剂,900 ℃熔融10 min,再加1.0 g熔剂,800 ℃熔融5 min)熔样,则很好浸取,二氧化硅也易析出。另外,在溶液煮清的过程中,温度不能太高,太高硅*偏低,太低则不容易煮清,因此建议在250 ℃左右的电热板上加热,保证受热较为均匀;此外,浸取的酸不能直接加入浓盐酸,加1:1的盐酸,以免二氧化硅析出。
2.3 标准曲线的配置
对于硅和镁元素,标准曲线中加入与样品同等浓度的过氧化钠测定的结果与不加过氧化钠测定的结果基本一致,而对于含量稍低的Al2O3、CaO、Cr2O3水标测出的结果偏高,要求加入同等量的过氧化钠和镁。
2.4. 测定结果
结果及与化学方法的对照见下表1。由表1 可知,此方法的测定结果与客户提供的化学方法的测定结果基本一致,偏差分别为0.22(Al2O3)、0.03(CaO)、0.48(MgO)、SiO2(0.56)、0.01(Cr2O3),在客户允许的范围内;方法的精密度比较好,8次平行测定的标准偏差分别为:0.77%(Al2O3)、3.57%(CaO)、 0.28%(MgO)、0.52%(SiO2)、1.83%(Cr2O3)。
表1 各元素测定结果
方法 含量,w/%
Al2O3 CaO MgO SiO2 Cr2O3
本法 1 16.35 1.94 42.42 35.25 2.19
2 16.39 1.90 42.49 35.18 2.18
3 16.52 1.90 42.49 35.30 2.19
4 16.12 1.75 42.63 35.09 2.16
5 16.50 1.79 43.25 35.25 2.19
6 16.45 1.92 42.56 35.23 2.21
7 16.37 1.90 41.81 35.65 2.27
8 16.45 1.89 42.57 35.52 2.13
标准偏差(w/%) 0.126 0.0667 0.121 0.185 0.040
相对标准偏差/% 0.77 3.57 0.28 0.52 1.83
平均值 16.39 1.87 42.58 35.31 2.19
化学法 16.17 1.84 42.10 35.87 2.18
3 结论
ICP-AES法测定高碳铬铁渣中的Al2O3、CaO、Cr2O3、SiO2、MgO的方法准确度高、精密度好,解决了客户用化学法测定此类样品方法繁琐、耗时的缺陷。
-/gbahabd/-

http://xjr003.cn.b2b168.com

产品推荐