国产ICP光谱比较 电感耦合等离子光谱仪
  • 国产ICP光谱比较 电感耦合等离子光谱仪
  • 国产ICP光谱比较 电感耦合等离子光谱仪
  • 国产ICP光谱比较 电感耦合等离子光谱仪

产品描述

温度控制<0.1℃ 大面积CCD器 测试范围165nm-950nm 光源类型固态光源 品牌钢研纳克
【技术】光谱分析常用两种方法解读
一、电感耦合等离子体原子发射光谱法(ICP-AES)
原子发射光谱分析是根据试样物质中气态原子(或离子)被激发以后,其外层电子辐射跃迁所发射的特征辐射能(不同的光谱),用来研究物质化学组成的一种方法。比如钢研纳Plasma系列ICP-OES
1、原理
利用氩气等离子体产生的高温使样品被激发,放射出特征谱线,根据接收到的谱线的强度的不同,从而得到不同的元素含量。
2、方法
ICP可用于润滑油、润滑脂、燃料油和部分水剂中的光谱元素。通常采用的标准有:
对象-润滑油
ASTM D5185 用感应耦合等离子体原子发射光谱法(ICP-AES)测定使用过的润滑油中的添加元素,磨损金属和污染物以及中选定元素的标准试验方法;
GB/T 17476 使用过的润滑油中添加剂元素、磨损金属和污染物以及基础油中某些元素测定法(ICP-AES);
对象-润滑脂
ASTM D7303 用电感耦合原子发射等离子体原子发射光谱法测定润滑脂中金属的标准试验方法。
对象-燃料油
IP 501 通过灰化,熔融,感应耦合等离子体原子发射光法测定残渣燃料油中铝、硅、钒、镍、铁、钠、钙、锌、磷的试验方法;
ASTM D5184通过灰化,熔融,感应耦合等离子体原子放射分光光度法和原子吸收分光光谱法测定燃料油中铝和硅的标准试验方法。
对象-发动机冷却液
ASTM D6130发动机冷却液中硅与其他元素含量的测定电感耦合等离子体原子发射光谱法;
NB/SH/T 0828发动机冷却液中硅与其他元素含量的测定电感耦合等离子体原子发射光谱法;
二、旋转盘电极原子发射光谱法(RDE-AES)
1、原理
被分析的油样通过盘电极之间的间隙,被高压产生的高温电弧激发产生光束,经过入射狭缝到达光栅后,按不同波长经由出口狭缝输出到器,将光谱放大并转换为电信号,将得到的结果与标准曲线数据对比,即可分析出油样中各元素的浓度。
2、方法
ASTM D6595用旋转盘电极原子发射光谱法测定已用润滑油或已用液压液中污染元素和磨损元素的标准试验方法(RED-AES);
3、方法解读
范围:小于10μm尺寸的磨损金属颗粒物和污染物颗粒;
测试优点:*气源,操作简单,维护方便,样品*前处理,分析快速,通常30s即可给出油样中20余种元素的含量,可快速提供在用润滑油和在用液压液中异常磨损、添加剂损耗及污染物信息。
三、意义
通过光谱分析可以得到润滑油中各种微量元素的成分及含量,获取下列信息:
(1)对润滑添加剂及污染元素含量进行监测,可以判断油品劣化程度,为加换油提供依据;
(2)对磨损元素进行监测,结合设备运动摩擦副零部件的材料构成,可以判断磨粒产生的可能部位;
(3)根据磨损元素的变化率可以判断摩擦副的磨损趋势和磨损程度。
国产ICP光谱比较
钢研纳克高分辨率时序扫描型ICP光谱仪测定镧铈合金中15种稀土元素
摘 要 利用钢研纳克技术有限公司研制的光栅刻线为3600条/mm的高分辨率时序扫描型ICP-AES发射光谱仪研究了镧铈基体对其中13种稀土元素分析线的光谱干扰情况。给出了镧铈合金中35%镧和65%铈作为基体时, 其中13 种稀土元素的分析谱线,并估算了各元素分析谱线的检出限,解决了以镧铈为基体材料的元素含量准确的难题。
关键词 ICP-AES,稀土;镧铈合金;光谱干扰
稀土镧铈合金主要用做贮氢合金材料和钢材添加剂,其主要功能为:1) 用LC/LPC金属作为添加剂提升金属材料综合性能方面的应用;2) 以LC/LPC金属作为合金主要成分研发高性能合金材料产品;3) LaCe/LaPrCe 作为合金化合物在镍氢电极负极材料方面的应用。ICP-AES法测定镧铈合金中的稀土元素时,由于ICP 相当强的激发能力, 使得可观测的稀土元素原子发射光谱比电弧或火花光源更加丰富,因此全面了解各元素之间的光谱干扰信息是ICP-AES法准确测定稀土元素的重要基础。
近年来,国内一些研究小组利用光栅刻线数为3600条/mm的高分辨率ICP-AES发射光谱仪, 系统地研究了十五种稀土元素作为基体时对其他稀土元素分析线的干扰轮廓[ 1-6]。镧铈合金由于受镧和铈双重基体的影响,光谱干扰更加复杂。本文采用钢研纳克技术有限公司的Plasma-1000型高分辨率时序扫描式ICP-AES光谱仪并在文献[1]-[6]的基础上,选择受镧或铈干扰小或干扰较小的谱线作为考察对象,考察了镧铈合金中各稀土元素受镧铈基体干扰的情况,给出了35%镧和65%的铈作为基体时, 其他13种稀土元素的分析线,并估算了此条件下各元素的检出限。
1 实验部分
1.1 仪器及参数
Plasma 1000 型顺序扫描发射光谱仪(纳克) , Czermy-Turner光学系统, 焦矩: 1000mm,光栅有效面积110×110,光栅刻线: 3600 条/mm, 倒线色散率和分辨率: 0.22 nm/mm,0. 0066 nm,入射狭缝20 μm, 出射狭缝20 μm。高频电源: 频率27. 12 MHz、入射功率1. 15 kW。工作气体: 氩气纯度> 99. 95%, 冷却气15 L/ min、等离子气1. 2 L/min、载气0.5 L/ min, 冲洗气3. 5 L/min, 观察高度15.0 mm。
1. 2 主要试剂与稀土标准系列
盐酸、硝酸均为AR级;稀土标准溶液:1 mg/mL,盐酸或硝酸介质;实验用水为蒸馏水。
1.3实验方法
1.3.1 准确称取0.1000 g试样于150 mL烧杯中,加盐酸10 mL,低温电热炉上加热溶解样品,待样品溶解完后,冷却至室温,转移到100 mL容量瓶,加水定容至刻度,此溶液用于测量除镧铈以外其他稀土元素;
1.3.2 准确分取20 mL 1.3.1的原溶液于100 mL容量瓶中,补加盐酸5 mL,加水定容至刻度,此溶液用于测量镧和铈元素。
1.3.3 标准曲线
除镧铈以外其它元素标准曲线:在五个100 mL容量瓶中,分别加入35 mg 99.99%的镧基体和65 mg 99.99%的铈基体,加盐酸10 mL,并分别加入10、50、100、500μg的Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tu、Yb、Lu、Y等稀土元素的混合标液,用水定容到刻度;
镧和铈标准曲线:在五个100 mL容量瓶中,分别加入10 mL盐酸,然后再分别加入0、12、13、14、15 mL的铈标准溶液(1 mg/mL)和0、7、6、5、4 mL的镧标准溶液(1 mg/mL),用水定容至刻度。
2 结果与讨论
2.1 分析谱线的选择
根据文献[1]-[6]中提供的纯溶液中杂质元素谱线的检出限、信背比以及不同稀土基体时的背景相当浓度值和扫描图综合考虑, 选择出适合镧铈基体中的稀土元素分析的分析线作为本实验的待考察谱线,见表1。实验结果表明,Tm、Nd、Tb在考察的范围内,没有找到特别合适的谱线,因此选择受两种基体干扰相对较小的谱线。
表1 Plasma 1000 谱线
元素 谱线/nm 元素 谱线/nm
La 333.749 Er 323.058; 337.271; 349.910; 369.265
Ce 413.380; 418.660 Tm 313.126; 342.508
Pr 414.311; 417.939; 422. 535 Yb 289.138; 328.937
Nd 401.225; 406.109; 430.358 Lu 261.542
Sm 359.260; 442.434 Y 324.228; 371.030; 377.433
Eu 381.967; 412.970 Dy 353.170
Gd 335.047; 336.223 Ho 345.600
Tb 350.917; 367.635
表2 镧铈合金中各稀土元素的分析谱线
元素 分析线/nm 元素 分析线/nm
La 333.749 Er 349.910 369.265
Ce 413.380 418.660 Tm 313.126
Pr 422.535 Yb 328.937
Nd 406.109 430.358 Lu 261.542
Sm 359.260 Y 324.228; 377.433
Eu 381.967 Dy 353.170
Gd 335.047 Ho 345.600
Tb 350.917; 367.635
2.2 检出限
在表2所列的仪器条件下测定了15 个稀土元素在镨钕基体中对所选的分析线按文献[ 7]估算了检出限。估算检出限公式如下:
,式中I n/I b为分析物的净强度和背景强度比; C为产生I n/I b 的分析物浓度。
表 3 镧铈合金中各稀土元素谱线检出限
元素 分析线/nm Plasma100检出限
/(g/mL)
La 333.749;
379.478 0.0050
0.0035
Ce 413.380
418.660 0.015
0.019
Pr 422. 535 0.015
Nd 406.109
430.358 0.01
0.01
Sm 359.260 0.0075
Eu 381.967 0.001
Gd 310.050
335.047 0.0058
0.005
Tb 350.917
367.635 0.006
0.02
Er 337.271
369.265 0.003
0.0038
Tm 313.126 0.0025
Yb 328.937 0.0006
Lu 261.542 0.0013
Y 324.228
377.433 0.0028
0.0025
Dy 353.170 0.0024
Ho 345.600 0.005
3 结论
1)本工作就纳克生产的高分辨率光谱仪对稀土元素的分析性能和光谱干扰研究结果表明: 与普通分辨率光谱仪相比, 背景相当浓度值和光谱干扰程度显著降低, 因而提高了检出能力和分析结果的准确度,在以稀土为主要共存物的痕量稀土分析中具有明显优势。
2)研究了镧铈基体对其他13个稀土元素分析线的光谱干扰情况。给出了35%镧和65%的铈作为基体时, 13种稀土元素的分析线,并估算了此条件下各元素的检出限,为ICP-AES法准确测定镧铈合金中13种稀土元素奠定了基础。
参考文献:
1 李冰,尹明. 高分辨型电感耦合等离子体发射光谱仪测定稀土元素的光谱干扰研究I. 铈镨和钕基体[J]. 分析测试仪器通讯,2(6):63-81.
2 谷胜,杨赸原,李冰. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究 Ⅱ. 钐基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),1997, 17(2):8 8 -94.
3 应海,杨原,张志刚. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:Ⅲ镝基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),1998, 18(5):559-564.
4 孙振华,孙大海,谷胜. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:VI 铕、钆基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2000, 20(1):49-54.
5 孙振华,谷胜,孙大海. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:V 镥、铥、钇、镱基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2000, 20(2):222-228.
6 孙振华,李冰, 孙大海. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES 研究:VI 镧、铽、钬、铒基体对其他稀土元素的光谱干扰. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2001, 21(1):57-61.
7 Winge R K, Fassel V A, Peterson V J, etal. Inductively Coupled Plasma Atomic Emission Spectroscopy[M]. An Atlas of Spectral Information. Amsterdam: Elsevier, 1985.
国产ICP光谱比较
Nd-Fe-B样品中稀土元素和非稀土元素测试
研究报告
备注:
样品来源于客户演示样品,要求测试样品中的Pr、Nd、Dy、Ho、Al、B、Co、Cu、Ga,针对3台仪器做了相关的谱线对比和数据对比。
一、样品要求及前处理
共2个样品,磁材。
二、实验室准备
2.1实验室环境:22℃,相对湿度:30%;
2.2采用 Plasma 2000;
2.3氩气纯度≥99.999%;
2.4水:全部均以二次水为标准;
三、样品测试
1试料
根据不同待测元素,试样的称样量不同。
2测定次数
称取2份试料进行平行测定,取其平均值。
3空白试验
随同试料做空白试验。
4分析试液的制备
称取样品0.1000g,加入2mL HCl和0.2mLHNO3,置于120℃加热板,待反应完全后,冷却定容至100mL 玻璃容量瓶中,备用,用于B、Al、Cu、Co、Ga、Dy、Ho。
称取样品0.0100g,加入2mL HCl和0.2mLHNO3,置于120℃加热板,待反应完全后,冷却定容至100mL 玻璃容量瓶中,备用,用于Pr、Nd。
5配制校准曲线溶液(%)
元素 S0 S1 S2 S3
基体0.07gFe和0.02gNd,2mL HCl和0.2mLHNO3 B、Al、Cu、Co、Ga、Dy、Ho 0 0.1% 0.5% 1%
基体0.007gFe,2mL HCl和0.2mLHNO3 Pr 0 4% 6% 8%
Nd 0 15% 20% 25%
6谱线选择(%)
6.1 725仪器谱线选择
元素 谱线 谱线选择 线性
Nd 401.224、406.108、410.945、430.357 401.224的谱峰有明显干扰,峰形明显不是高斯峰,剔除 406.108谱峰有明显干扰,峰形明显不是高斯峰,剔除 430.357底部有明显干扰,导致数据偏高,剔除 终选择410.945
谱线线性0.9999
Pr 406.281、410.072、422.293 406.281底部左侧有明显干扰,测试数据偏高,剔除 410.072和422.293两条谱线无干扰且线性良好,都可以选择
谱线线性0.9999
Al 396.152、308.215、237.312 396.152在低含量有明显干扰,峰位不正,剔除 308.215存在明显干扰,剔除 237.312峰形良好,选择
谱线线性0.9999
B 208.889、208.956、249.678、249.772 249.772处,样品存在明显干扰,剔除
其余三条谱线正常
谱线线性0.9999
Co 228.615
、238.892 两条谱线均可以使用,但是建议用228.615(信噪比高)
谱线线性0.9999
Cu 213.598、224.700、324.754、327.395 327.395底部右侧有干扰峰,造成样品测试结果偏高,剔除 213.598谱线正常,建议选用 224.700谱线左侧底部有干扰,但样品测试数据正常 324.754谱线底部左侧有干扰,但样品测试数据正常 谱线线性0.9999
Dy 340.780、353.171 340.780谱线正常,建议选用
353.171谱线在低含量段干扰较大,剔除
谱线线性0.9999
Ga 294.363、417.204 294.363谱线正常,建议选用
417.204谱线干扰较大,剔除
谱线线性0.9999
Ho 339.895、341.644、345.600 339.895底部左侧有小干扰,对低含量影响较大,剔除 341.644谱线正常,建议选用
345.600底部左侧有小干扰,对低含量影响较大,剔除
谱线线性0.9999
6.2 1000仪器谱线选择
元素 谱线 谱线选择 线性
Nd 401.224、406.108、410.945、430.357 401.224基本正常
406.108基本正常
430.357基本正常
410.945基本正常
谱线线性0.9999
Pr 406.281、410.072、417.939 417.939底部右侧有明显干扰,剔除
410.072和406.281两条谱线无干扰且线性良好,都可以选
择 但测试数据上看,406.281数据偏高,因此选择410.072,谱线线性0.9999
Al 396.152、308.215、237.312 396.152底部有明显干扰,剔除 308.215底部有明显干扰,剔除
237.312峰形良好
谱线线性0.9999
B 208.889、208.956、249.678、249.772 249.772处,样品存在明显干扰,剔除 其余三条谱线正常
谱线线性0.9999
Co 238.636
、238.892 两条谱线均可以使用,但是建议用238.636(信噪比高)
谱线线性0.9999
Cu 213.598、224.700、324.754、327.395 327.395底部左侧有干扰峰,造成样品测试结果偏高,剔除 213.598谱线正常,建议选用 224.700谱线左侧底部有干扰,但样品测试数据正常 324.754谱线底部左侧有干扰,但样品测试数据正常 谱线线性0.9999
Dy 353.171 353.171谱线在低含量段干扰较大,剔除
谱线线性0.9999
Ga 294.364、417.204 294.364谱线正常,建议选用
417.204谱线干扰较大,剔除
谱线线性0.9999
Ho 339.898、341.644、345.600 339.898底部左侧有小干扰,对低含量影响较大,剔除 341.646谱线正常,建议选用
345.600底部左侧有小干扰,对低含量影响较大,剔除 谱线线性0.9999
6.3 2000仪器谱线选择
元素 谱线 谱线选择 线性
Nd 401.224、406.108、410.945、430.357 401.224、406.108、430.357、410.945谱线干扰且线性良好,都可以选择(由于有725做依据,怀疑是仪器分辨率较差导致谱线看不到干扰) 谱线线性0.9999
Pr 406.281、410.072、422.293 406.281、410.072和422.293谱线干扰且线性良好,都可以选择(由于有725做依据,怀疑是仪器分辨率较差导致谱线看不到干扰) 谱线线性0.9999
Al 396.152、308.215、237.312 308.215存在明显干扰,剔除
396.152、237.312峰形良好,选择
谱线线性0.9999
B 208.889、208.956、249.678、249.772 249.772处,样品存在明显干扰,剔除
其余三条谱线正常
谱线线性0.9999
Co 228.615
、238.892 两条谱线均可以使用
谱线线性0.9999
Cu 213.598、224.700、324.754、327.395 224.700底部右侧有干扰峰,造成样品测试结果偏高,剔除 213.598、327.395、324.754谱线正常,建议选用 谱线线性0.9999
Dy 340.780、353.171 340.780、353.171谱线正常,建议选用
谱线线性0.9999
Ga 294.364、417.204 294.364谱线正常,建议选用
417.204谱线干扰较大,剔除
谱线线性0.9999
Ho 339.895、341.644、345.600 339.895、341.644谱线正常,建议选用
345.600底部左侧有小干扰,对低含量影响较大,剔除 谱线线性0.9999
7结果(%)
725数据
元素 Pr Nd Al B Co Cu Ga Dy Ho
标准推荐谱线 440.884 445.157 237.312 208.889、208.956、249.773 228.615、237.862 324.754、327.395、224.700 294.363 387.212、340.780 341.646
谱线 nm 410.072 410.945 237.312 249.678 228.615 213.598 294.363 340.780 341.644
38SH A.V. 6.780 22.08 0.652 0.781 0.408 0.183 0.138 1.995 0.221
N48 A.V. 6.869 22.01 0.253 0.756 0.387 0.1339 0.131 无 无
1000数据
元素 Pr Nd Al B Co Cu Ga Dy Ho
谱线 nm 410.072 406.281 430.358 410.946 406.109 401.225 237.312 249.678 238.636 213.598 294.364 353.170 341.644
38SH 1 6.83 6.82 22.57 21.69 22.54 22.41 0.862 1.003 0.610 0.221 0.198 2.572 0.283
2 6.89 7.10 22.49 21.83 22.67 22.48 0.857 1.004 0.629 0.232 0.197 2.578 0.290
A.V. 6.86 6.96 22.53 21.76 22.61 22.45 0.860 1.004 0.620 0.226 0.198 2.575 0.287
N48 1 7.58 7.15 23.09 22.36 22.66 22.96 0.361 0.997 0.616 0.178 0.199 无 无
2 7.52 7.15 23.53 22.37 22.58 22.48 0.360 0.982 0.603 0.167 0.191 无 无
A.V. 7.55 7.15 23.32 22.37 22.62 22.72 0.361 0.989 0.609 0.173 0.195 无 无
2000数据
元素 Pr Nd Al B Co Cu Ga Dy Ho
谱线 nm 406.281 410.072 430.358 401.225 237.312 249.678 238.892 324.754 294.364 340.716 341.646
38SH 1 6.78 6.77 21.80 21.84 0.818 0.991 0.516 0.233 0.144 2.468 0.295
2 6.80 6.79 21.85 21.89 0.822 0.997 0.524 0.235 0.147 2.467 0.298
A.V. 6.79 6.78 21.83 21.86 0.820 0.994 0.520 0.234 0.146 2.468 0.296
N48 1 7.25 7.23 23.07 23.06 0.288 0.963 0.496 0.178 0.128 无 无
2 7.44 7.37 23.03 23.16 0.280 0.957 0.492 0.176 0.126 无 无
A.V. 7.35 7.30 23.05 23.11 0.284 0.960 0.494 0.177 0.127 无 无
反测 8—8.04 8—7.9565 25—24.97 25—25.05 0.5—0.533 0.5—0.512 0.5—0.499 0.5—0.497 0.5—0.516 0.5—0.521 0.5—0.524
国产ICP光谱比较
国产单道扫描ICP-AES光谱仪直接测定钕铁硼中常量及微量元素
摘要:研究采用国产单道扫描ICP-AES发射光谱仪直接测定钕铁硼材料中的常量和微量元素Gd、Ho、Tb、Dy、Pr、Nd、B、Cu、Co、Al、Ga、Nb和Zr方法。选择了合适的分析线,并采用基体匹配与背景扣除法进行干扰校正。各被测元素的回收率在94%~106%之间,相对标准偏差小于3%。本法已应用于钕铁硼材料的快速,并获得了满意的结果。
关键词:ICP-AES;钕铁硼磁性材料;稀土元素
近年来,随着稀土永磁事业的发展,高性能钕铁硼材料不断涌现,其中所添加的元素也有所增加,而且其加入量的精确程度要求越来越高。一般的化学方法很难适应这种多元素、高低含量的同时测定,而ICP-AES以其检出限低,精密度好,动态范围宽,分析速度快等优点在分析领域已得到了广泛的应用[1-6]。本文通过研究实现将国产单道扫描ICP-AES发射光谱仪成功应用于直接测定钕铁硼材料中的常量和微量元素。
1 实验部分
1.1 仪器和参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克技术有限公司);高纯氩(纯度≥99.999%),光栅为3600条/mm。参数设置:功率1.15 kW ,冷却气流量15.0 L/min,辅助气流量0.5 L/min,载气流量0.15 L/min,蠕动泵泵速20 rpm,观测高度距功率圈上方10 mm,耐氢氟酸雾化器及雾室,三层同轴石英炬管。
1.2 试剂
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂;硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;氢氟酸ρ≈1.15 g/ml,优级纯,北京化工厂;Gd、Ho、Tb、Dy、Pr、Nd、B、Cu、Co、Al、Ga、Nb、Zr的标准溶液质量浓度均为1000 µg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
1.3.1 称取0.5 g试料,精确至0.0001 g。置于250 ml烧杯中,加20 ml王水,低温加热至溶解完全,冷却至室温后移入100 ml容量瓶中,定容,混匀。再从上述100 ml容量瓶中准确移取10.00 ml溶液于100 ml容量瓶中,加8 ml王水,稀释至刻度,摇匀,待测。此溶液用于测量除Nb、Zr外的稀土和非稀土元素。随同试料做空白试验。
1.3.2 称取0.5 g试料,精确至0.0001 g。置于250 ml聚四氟乙烯杯中,加20 ml王水,低温加热至溶解完全,再加入10 ml氢氟酸,冷却至室温后,中速滤纸过滤,移入100 ml塑料容量瓶中,定容,混匀。再从上述100 ml容量瓶中准确移取10.00 ml溶液于100 ml塑料容量瓶中,加8 ml王水和9 ml氢氟酸,稀释至刻度,摇匀,待测。此溶液用于测量Nb和Zr元素。随同试料做空白试验。
1.3.3 标准系列溶液的配制
1.3.3.1王水介质标准系列溶液的配制
各元素的标准系列质量浓度见下表,总浓度为500 µg/ml,不足部分用Fe补足。
表1 稀土和非稀土标准溶液的组成
元素 标液质量浓度/(µg/ml)
0 1 2 3 4
Nd 0 70.00 100.00 120.00 140.00
Pr 0 45.00 35.00 25.00 15.00
Dy 0 25.00 15.00 5.00 0.50
Ho 0 25.00 15.00 5.00 0.50
Tb 0 15.00 5.00 3.50 0.50
Gd 0 0.50 2.50 10.00 25.00
Ga 0 15.00 5.00 3.50 0.50
Al 0 0.50 1.50 3.50 5.00
Cu 0 0.50 1.50 3.50 5.00
B 0 5.00 3.50 1.50 0.50
Co 0 0.50 1.50 3.50 5.00
1.3.3.2 王水加氢氟酸介质标准系列溶液的配制
各元素的系列标准质量浓度见下表,补加Fe标液300.00 µg/ml。
表2 Nb和Zr标准溶液的组成
元素 标液质量浓度/(µg/ml)
0 1 2 3
Nb 0 0.50 7.50 15.00
Zr 0 15.00 7.50 0.50
2 结果与讨论
2.1分析谱线的选择
由于稀土元素谱线较为复杂,因此在谱线选择上要充分考虑其光谱干扰,首先对所选谱线进行轮廓扫描,即用纯试剂找到被测元素的峰位,再在此峰位及其附近扫描实际样品,观察实际样品的峰形及背景情况,终确定合适的谱线并在其合适的位置扣除背景。
表3 推荐的分析线
元素 分析线/nm 元素 分析线/nm
B 208.889,208.959 Gd 336.223
Cu 224.700 Ho 345.600
Co 228.616 Tb 350.917
Al 237.312 Dy 364.540
Ga 294.364 Pr 440.882
Nb 316.340,319.498 Nd 445.157
Zr 339.198,343.823
2.2 加标回收实验与方法精密度
回收试验结果表明,各元素回收率在94%~106%之间。方法精密度(RSD)值小于3%。
表4 方法准确度实验
元素 加入量/(µg/mL) 回收量/(µg/mL) 回收率/% RSD/%(n=9)
B 5.00 5.09 101.8 1.88
Cu 5.00 5.02 100.4 1.15
Co 5.00 4.94 98.8 2.03
Al 5.00 4.71 94.2 2.52
Ga 5.00 4.78 95.6 1.56
Nb 5.00 4.89 97.8 1.37
Zr 5.00 5.16 103.2 1.24
Gd 5.00 5.27 105.4 1.53
Ho 5.00 4.71 94.2 2.85
Tb 5.00 5.27 105.4 1.22
Dy 5.00 4.73 94.6 2.73
Pr 10.00 9.78 97.8 0.97
Nd 20.00 20.53 102.65 0.70
3 结论
以上试验结果表明,应用ICP-AES法测定钕铁硼磁性材料中的常量和微量元素,精密度好,结果准确。此外,该方法简便、快速,完全满足钕铁硼产品对于常量和微量元素的分析要求。
参考文献:
[1]李慧,范乐巧. 钕铁硼磁性材料中La、Ce、Sm 、Pr、Gd五元素的ICP-AES法测定[J]. 光谱实验室,1991,Z2:48-54.
[2]赵勇,邵芳. 国产IC扫描光谱仪直接测定钕铁硼中Nd、B、Co、Dy、Al、Tb、V、Cr量的研究[J]. 稀土,1993,14(2):36-38.
[3]赵玉珍,吕佩德. 端视ICP-AES法测定钕铁硼永磁材料中常量及微量元素[J]. 分析试验室,1997,16(6):25-27.
[4]叶晓英,李帆,庞晓辉. ICP-AES测定铁钕合金中Ho、Er、Tb、Tm、Cu、Mo、Nb等七种元素[J].光谱实验室,2003,20(1):113-116.
[5]李明来,杨桂林,邓龙水,吕利**. 氟化物沉淀和ICP-AES法测定钕铁硼中稀土总量和单一稀土元素[J]. *十二届全国稀土元素分析化学学术报告暨研讨会论文集(下),2007: 272-275.
[6]温斌,姚南红. ICP-AES法测定钕铁硼合金中各稀土及铝、铜、硼、钴、镍、铬、锰、镁、钛、镓、锆含量[J]. *十二届全国稀土元素分析化学学术报告暨研讨会论文集(下),2007: 263-265.
-/gbahabd/-

http://xjr003.cn.b2b168.com

产品推荐