电感耦合等离子国产ICP 电感耦合等离子体光谱仪生产
  • 电感耦合等离子国产ICP 电感耦合等离子体光谱仪生产
  • 电感耦合等离子国产ICP 电感耦合等离子体光谱仪生产
  • 电感耦合等离子国产ICP 电感耦合等离子体光谱仪生产

产品描述

光源固态光源 CCD器 光室温度38摄氏度 光学系统中阶梯光栅与棱镜交叉色散结构 进样系统可拆卸式或一体式炬管 生产厂家钢研纳克
钢研纳克ICP光谱仪测定污泥中铝、钙、铜、铁、镁、锌等元素
(钢研纳克技术有限公司,北京 100081)
摘要:污泥中除了含有大量丰富的**物及氮、磷等营养元素之外,还含有很多难以降解的有金属元素。如果处理不当将会造成更严重的二次污染。采用在盐酸,硝酸,氢氟酸及双氧水条件下对样品进行微波消解,而后高氯酸冒烟处理样品的方式,采用电感耦合等离子体原子发射光谱对污泥中铝、钙、铜、铁、镁、锌等元素进行。选择合适的分析谱线,标准曲线线性系数大于0.9999。
关键词:
随着城市污水处理量的不断提高,其处理过程中污泥的总量也在不断的增加。污泥中在含有大量丰富的**物及氮、磷等营养元素之外,还含有很多难以降解的有毒重金属元素。如果处理不当将会造成更严重的二次污染。因此对污泥进行监测尤为重要。
目前国内外多采用传统干法或者湿法样品消解技术并以原子吸收光谱法进行测量,也出现了使用不同酸进行微波消解样品使用原子吸收光谱法测定污泥中金属元素。但传统技术用酸多,金属元素易挥发,耗时长且操作复杂,采用原子吸收光谱法易产生基体干扰且不能多元素同时测定。ICP-AES作为一种快速定量分析的手段,检出限低,精密度好,动态范围宽,分析速度快,可快速实现对污泥中铝、钙、铜、铁、镁、锌等元素的。
1 实验部分
1.1 仪器参数及试剂
Plasma 2000 全谱型电感耦合等离子体光谱仪(钢研纳克技术有限公司)。
参数设置见表1
表1 仪器测定参数
工作条件 参数
等离子体流量L/min 15
辅助气流量L/min 0.5
载气流量L/min 0.7
射频功率W 1250
曝光时间s 8
观测方向 径向
氩气纯度 >99.999%
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂
硝酸,ρ≈1.42g/ml,优级纯,北京化工厂
高氯酸,ρ≈1.76g/ml,优级纯,北京化工厂
氢氟酸,优级纯。
双氧水,优级纯。
1.2 样品处理
称取0.1 g样品,放置于微波消解罐中,加入6ml硝酸,2ml盐酸,3ml氢氟酸,1ml过氧化氢,放入微波消解仪中进行消解,消解条件见表1。冷却后取出,使用少量水将样品转移至聚四氟乙烯烧杯中,加入3ml高氯酸,冒烟至近干,取下冷却烧杯,加入5ml硝酸溶解残渣,冷却后定容至100ml容量瓶中,摇匀。 若有不溶物,干过滤。
2 结果与讨论
2.1 分析谱线的选择
对于同一种元素, ICP-AES 可以有多条谱线进行,但是由于基体和其他元素的干扰,并不是所有的谱线都适用。进行光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选其灵敏度适宜,谱线周围背景低,且无其他元素明显干扰的谱线作为元素的分析线。具体谱线见表2,选择依据见图1-图6.
表2 谱线选择
元素 Al Ca Cu Fe Mg Zn
谱线 308.215 317.933 327.396 259.940 285.213 213.856
图1 Al308.21谱线与样品谱图
图2 Ca标准曲线与样品谱图
图3 Cu标准曲线与样品谱图
图4 Fe标准曲线与样品谱图
图5 Mg标准曲线与样品谱图
图6 Zn标准曲线与样品谱图
2.2 实际样品的测定
2.2.1校准曲线
实际样品按照本文方法进行分析,校准曲线线性相关系数等见表3,校准曲线如图7-图12.
表3 各元素的线性回归方程及线性范围
元素 线性范围/(g/ml) 线性回归方程 相关系数
Al 10-50 y= 1429+x+229.95 0.9999
Ca 5-20 y= 3983x+788 0.9999
Cu 0.5-1.5 y= 6575x-83 0.9999
Fe 5-30 y= 3352.6x+24 0.9999
Mg 2-6 y= 17822.97x+9513 0.9999
0.5-3 y= 3263.33x+35 0.9999
图7 Al校准曲线
图8 Ca校准曲线
图9 Cu校准曲线
图10 Fe校准曲线
图11 Mg校准曲线
图12 Zn校准曲线
2.2.2 测定结果
实际样品按照本文方法进行分析,其结果见表4。满足客户要求。
表4 实际样品分析结果(mg/g)
样品名称 ICP-AES 客户结果
Al 68.02 68.07
Ca 17.52 17.31
Cu 1.583 1.604
Fe 35.57 35.75
Mg 5.821 5.861
Zn 2.442 2.342
3 结论
本方法ICP-AES方法测定污泥中铝、钙、铜、铁、镁、锌,方法简单,选用了合适的谱线,其线性相关系数大于0.9999,适用于污泥中铝、钙、铜、铁、镁、锌元素的。
电感耦合等离子国产ICP
钢研纳克Plasma2000ICP光谱仪测定中低合金钢中12种元素
关键词:Plasma2000,ICP-OES,中低合金钢,全谱瞬态直读
引言
中低合金钢是在碳钢的基础上加入少量合金元素得到的一类结构用钢。低合金高强度钢可以用较少的合金元素获得高的综合力学性能,以达到改善钢的性能,满足使用且成本低廉。中低合金钢中合金元素的含量测定十分重要。本文采用钢研纳克Plasma2000型电感耦合等离子体原子发射光谱仪(ICP-OES) 对中低合金钢中的Si,Mn,P,Cr,Ni,Mo,V,Ti,Al、Cu、Co、Y等12种常见元素的含量进行了测定,标准样品测试结果吻合,效果满意。
仪器特点
Plasma 2000 电感耦合等离子体原子发射光谱仪(钢研纳克技术股份有限公司)是一种使用方便、操作简单、测试快速的全谱ICP-OES分析仪,具有良好的分析精度和稳定性。仪器特点如下:
 高效固态射频发生器,**高稳定光源;
 大面积背照式CCD芯片,宽动态范围;
 中阶梯光栅与棱镜交叉色散结构,体积小巧;
 多元素同时分析,全谱瞬态直读。
样品前处理
参考国标GB/T 20125-2006《低合金钢 多元素含量的测定 电感耦合等离子体原子发射光谱法》,准确称取1.0000 g试样,加入盐酸、硝酸混合酸分解,如有不溶碳化物,加高氯酸冒烟,以混酸溶解盐类,冷却状态下加入氢氟酸,试液稀释至一定体积,干过滤。
样品溶解图解
仪器参数
仪器工作参数 设定值 仪器工作参数 设定值
射频功率/W 1350 辅助气流速/L·min-1 0.5
冷却气流速/L·min-1 13.5 蠕动泵转速/rpm 20
载气流速/L·min-1 0.5 进样时间/s 25
标准样品
选用标准样品进行测试
标样编号 标样名称
GBW(E)010026a 碳钢35#
YSBC 11213-93 CrMnSiNiMo
YSB14134-2001 焊条钢
BH 0640-1 45CrNiWV
YSBC11121-95 15钢
典型元素谱线
标样 浓度% 计算浓度% 误差
空白 0 -0.0016 0.0016
标准1 0.01 0.0085 0.0015
标准2 0.05 0.0492 0.0008
标准3 0.1 0.1024 -0.0024
标准4 0.5 0.5034 -0.0034
标准5 1 0.9981 0.0019
标样 浓度% 计算浓% 误差
空白 0 -0.0005 0.0005
标准1 0.0010 0.0006 0.0004
标准2 0.0050 0.0047 0.0003
标准3 0.01 0.0100 0.0000
标准4 0.05 0.0491 0.0009
标准5 0.1 0.1017 -0.0017
标准6 0.5 0.4998 0.0002
标样 浓度% 计算浓度% 误差
空白 0 -0.0002 0.0002
标准1 0.0010 0.0009 0.0001
标准2 0.0050 0.0049 0.0001
标准3 0.0100 0.0105 -0.0005
标准4 0.0500 0.0499 0.0001
标准5 0.1000 0.1047 0.0047
标准6 0.5000 0.5036 0.0036
准确度及稳定性
元素 Al Co Cr Cu Mn Mo Ni P Ti V Si
谱线 / nm 396.152 228.616 267.716 327.396 257.610,260.569 202.030 231.604 178.280
334.941 309.311,311.071 251.612
15钢  认定值/% ---- ---- 0.026 0.028 0.317 ---- 0.017 0.0078 ---- ---- 0.054
Plasma2000测定值/% 0.156 0.0063 0.024
0.028
0.315 0.0005 0.0143 0.0069 0.0011 0.0006 0.054
RSD(n=11)/% 2.53 (SD) 0.0001 1.70 1.99 1.83 (SD) 0.0001 1.86 (SD) 0.0009 (SD) 0.00003 (SD) 0.00004 0.86
焊条钢  认定值/% 0.015 ---- 0.009 0.043 1.38 0.038 0.355 0.0035 0.195 ---- 0.069
Plasma2000测定值/% 0.016
0.0074 0.0081 0.044
1.36 0.037
0.365 0.0029 0.196 0.0003 0.069
RSD(n=11)/% 2.32 (SD) 0.0001 1.79 1.49 1.94 1.40 1.40 (SD) 0.0009 1.60 (SD) 0.00004 1.00
CrMn  认定值/% ---- ---- 0.84 0.059 1.15 0.33 1.96 0.018 ---- 0.058 0.96
Plasma2000测定值/% 0.0235 0.114 0.840 0.057
1.13 0.32
1.98 0.016
0.0095 0.060
0.93
RSD(n=11)/% 1.82 1.73 1.87 1.79 1.51 1.82 0.92 1.41 1.92 1.43 1.87
45Cr  认定值/% ---- ---- 1.03 ---- 0.687 ---- 1.515 0.0248 ---- 0.146 0.47
Plasma2000测定值/% 0.114 0.0096 1.03 0.165 0.664
0.0166 1.510 0.0247 0.0030 0.149
0.467
RSD(n=11)/% 1.01 (SD) 0.0001 0.58 1.26 1.34 1.06 0.35 1.07 (SD) 0.00003 1.20 1.12
碳钢  认定值/% ---- ---- 0.051±0.002 0.068±0.002 0.71±0.007 ---- 0.08±0.002 0.022±0.002 ---- ---- 0.242
Plasma2000测定值/% 0.0011 0.0096 0.053
0.0795 0.612
0.0130 0.077
0.021
0.0014 0.0031 0.237
RSD(n=11)/% (SD) 0.00001 (SD) 0.0001 1.07 1.43 1.20 2.22 0.99 2.76 (SD) 0.00003 (SD) 0.00004 0.72
方法检出限
在选定工作条件下对标准溶液系列的空白溶液连续测定11次,以3倍标准偏差计算方法中各待测元素检出限,以10倍标准偏差计算方法中各待测元素的测定下限。
各元素的谱线和方法检出限
元素 谱线/nm 方法检出限/% 测定下限/%
Al 396.152 0.0002
0.0007
Co 228.616 0.0001
0.0004
Cr 267.716 0.0002
0.0007
Cu 327.396 0.00009
0.0003
Mn 260.569
0.0001
0.0003
Mo 202.030 0.0003
0.0010
Ni 231.604 0.0002
0.0007
P 178.280
0.0006
0.0025
Ti 334.941 0.00003
0.00008
V 309.311
0.00006 0.0002
Si 251.612 0.0004
0.0012
结论
参考标准GBT 20125-2006,利用Plasma 2000电感耦合等离子体发射光谱仪对中低合金钢中Al、Co、Cr、Cu、Mn、Mo、Ni、P、Ti、V、Y、Si等12种元素进行测定,方法检出限在0.00003%~0.0004%之间,结果与标样认定值一致。该方法应用范围广泛,对屑状、丝状等火花光谱无法的样品也能分析。 Plasma 2000能够快速、准确、可靠的测定中低合金钢中的Al、Co、Cr、Cu、Mn、Mo、Ni、P、Ti、V、Y、Si等12种元素。
仪器优点
1. 优异的光学系统
2. 固态高效射频发生器,体积更加小巧
3. 流程自动化,状态监控及自动保护
4. 科研级器,较高的紫外**化效率
5. 强大分析谱线
6. 信息直观丰富
7. 多窗口多方法
8. 编辑功能强大
9. 智能谱图标定
10.智能干扰矫正
电感耦合等离子国产ICP
钢研纳克微波消解-ICP-AES法测定塑料中Pb、Hg、Cd、Cr
摘要: 研究采用微波消解法进行溶样、ICP-AES测定塑料中Pb、Hg、Cd和Cr含量的方法。选择了合适的分析谱线。结果表明,Pb、Hg、Cd、Cr的检出限分别为0.02mg/L、0.02mg/L、0.002mg/L、0.002mg/L,回收率为86%~107%。该方法适用于塑料中Pb、Hg、Cd和Cr含量的快速分析。
关键词:微波消解;ICP-AES;塑料;Pb;Hg;Cd;Cr
塑料已经广泛地应用到各行各业,与人们的生活息息相关。然而由于塑料的生产工艺等原因不可避免地使用了有害的重金属,其中的Pb、Hg、Cd、Cr等重金属的危害已引起了**的重视,欧盟已各种严厉的政策、法令来限制塑料中Pb和Cd的使用,如RoHS指令、包装指令、玩具指令等。因此, 许多出口产品中的塑料部件均需要进行Pb、Hg、Cd、Cr含量的测定。
相对于传统的湿式消解法和马弗炉高温灰化法, 微波消解作为一种较新的样品处理技术具有一系列的优点:1)加热快、升温高、消解能力强,大大缩短了溶样时间;2)消耗酸溶剂少,空白值低;3)避免了挥发损失和样品玷污,回收率高,提高了分析的准确度和精密度。
相对于传统仪器原子吸收法, ICP-AES以其检出限低,精密度好,动态范围宽,分析速度快等优点在塑料制品分析领域的应用已有报道 [1-6]。本文研究了使用国产单道扫描ICP光谱仪测定塑料中的Pb、Hg、Cd、Cr,结果令人满意。
1 实验部分
1.1 仪器及参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克技术有限公司);高纯氩(纯度≥99.999%),光栅为3600条/mm。参数设置:功率1.15 Kw;冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min;蠕动泵泵速20 rpm;观测高度距功率圈上方12 mm;同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
EXCEL 全功能型微波化学工作平台(上海乞尧)。
1.2 试剂
硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;过氧化氢,ρ≈1.13g/ml,优级纯,北京化工厂;Pb、Hg、Cd、Cr的标准溶液质量浓度均为1000 µg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
称取已粉碎的塑料试样0.1 g (精确至0.0001g) 于聚四氟乙烯微波消解罐中, 加入10 mL HNO3、2mL H2O2溶液, 按照设定的消解程序(如表1所示)进行微波消解, 为避免反应过于剧烈, 采用程序升温的方法进行消解。消解完毕后,转移定容至50 mL, 待测。随同做试样空白试验。
表1 样品微波消解程序
升温程序 压力/MPa 温度/℃ 保持时间/min
2 结果与讨论
2.1 分析谱线的选择
对于同一种元素, ICP-AES 可以有多条谱线进行,但是由于基体和其他元素的干扰,并不是所有的谱线都适用。进行光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选定灵敏度适宜、谱线周围背景低、且无其他元素明显干扰的谱线作为元素的分析线,结果见表2。
表2 各元素分析线
2.2 方法的检出限
以空白溶液测定10次的标准偏差的3倍所对应的浓度作为检出限。各元素的检出限见下表3。由表可见,各元素的检出限均较低,可以满足塑料产品的日常要求。
表3 元素的检出限
元素 Pb Hg Cd Cr
检出限/(mg/L) 0.02 0.02 0.002 0.002
2.3 实际样品的测定
对实际塑料样品按照本文方法进行分析,并将测定结果与相应的参考值进行比对,结果表明,各元素的测试结果与参考值基本一致。
表4 测定结果与参考值对比
样品 元素 测定结果w/% 参考值w/%
2.4加标回收试验
按照选定的ICP工作条件和微波消解程序, 在样品中分别加入Pb、Hg、Cd、Cr混标溶液进行加标回收试验, 回收试验结果列于表5。由表5可知, 待测元素Pb、Hg、Cd、Cr的加标回收率在86%~107%, 表明本方法准确可靠。
表5 方法的加标回收
元素 本底值 加标量 测定均值 回收率
/(mg /L) /(mg /L) /(mg /L) /%
3 结论
对塑料进行微波消解前处理, 采用高灵敏度的单道扫描型ICP- AES成功测定了其中Pb、Hg、Cd、Cr含量,此法简便、准确, 适用于塑料中Pb、Hg、Cd、Cr的快速测定。
电感耦合等离子国产ICP
氢化物发生-ICP-AES测定生活饮用水中的Pb元素
摘要:采用钢研纳克公司的电感耦合等离子体发射光谱仪Plasma 2000测定饮用水中的Pb元素,配置合适的仪器参数,选择合适的谱线,其方法检出限为0.7ng/ml,线性相关系数为0.99997.该方法适合于测定饮用水中的Pb元素。
水是生命之源,饮用水的安全直接关系到人们的身心健康。近年来由于经济的*发展,大量污水废弃物等排入江河之中,水质严重变坏,水中的重金属元素严重**标,直接影响到的身心健康。铅元素作为对人体毒性很大的一种元素,过量的摄入会导致慢性中毒,因此饮用水中铅的测定尤为重要。根据《GB5749-2006生活饮用水卫生标准》 中规定,铅元素的含量不得**过0.01ug/ml。本方法检出限为0.7ng/ml,远远低于国家标准。适用于生活饮用水中Pb元素的。
1 实验部分
仪器参数及试剂
Plasma 2000 全谱型电感耦合等离子体光谱仪(钢研纳克技术有限公司)。
参数设置:功率1250W;冷却气流量15L/min;辅助气流量:0.5L/min;载气流量0.6L/min;
氢化物发生器(PG公司)。
参数设置:转数100rpm。
工作气体为高纯氩气(纯度≥99.999%)。
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂
,优级纯。
硼氢化钾:优级纯。
铁:优级纯。
氢氧化钾:优级纯。
样品处理
取20ml样品,加入0.25ml浓盐酸,加入0.25ml浓度为40mg/ml的溶液,定容至25ml,摇匀待测。
准确称取0.6g氢氧化钾,2g铁,3g硼氢化钾于100ml烧杯中,加水溶解,而后转移至100ml容量瓶中,定容摇匀。
准确转移0.2ml盐酸至100ml容量瓶中,定容摇匀。
2 条件实验
2.1 方法目的
在实际测试过程中,水中铅元素的值在10 ng/mL, 远远低于ICP-AES的检出能力。因此使用ICP必须寻找新的方法。由于ICP的进样系统的局限,提升的样品进入等离子体的效率只有1%-2%,绝大部分的提升样品是以废液的形式排出,所以提高进样效率就成为了使用ICP-AES测定水中铅元素的解决方法。
铅能够形成气态的共价氢化物(铅烷),因此若将提升的样品中铅全部以气态形式进入等离子体,那么相当于将铅元素进行富集,将较大提高ICP-AES的检出能力。
2.2 原理分析
在酸性介质下,铅与硼氢化钾作用下,形成共价键挥发性氢化物PbH_4。
KBH_4+3H_2 O+HCL+Pb^(2+)=H_3 BO_3+KCl+PbH_4+4H^+
铅的氢化物反应只有在氧化剂或者螯合剂的存在下才能有较高的效率,可能是因为氢在铅上有很大的过电位,这种过电位阻碍了BH_4^-离子的离解,抑制了铅烷的生成。铅烷的生成可能是BH_4^-离子与Pb^(2+)离子发生“原子(基团)转移反应”的结果,原子(基团)转移是控速步骤,过度中间体[H_3 B···H···Pb]^+。因为H^+的σ共价键必须把大量负电荷放到金属原子上,铅原子上有过量的负电荷,而铅的电负性又比较低,使得H···Pb键不稳定,所以H_3 B···H不容易断裂,H···Pb键不容易形成。如果使用络合剂与铅结合,借助共轭π键移去金属上过量的负电荷,增强H···Pb键 的稳定性,或者使用氧化剂中带负电荷的原子(如氧原子)进攻H_3 B···H键,减弱H_3 B···H的稳定性,都可以促使铅烷的形成。
同时,氧化剂的存在也可能氧化铅原子,使得Pb^(2+)变为Pb^(4+),同样有利于铅烷的生成。
2.3 分析谱线的选择
对于同一种元素, ICP-AES 可以有多条谱线进行,但是由于基体和其他元素的干扰,并不是所有的谱线都适用。进行光谱扫描后,根据样品中各待测元素的含量及谱线的干扰情况,选其灵敏度适宜,谱线周围背景低,且无其他元素明显干扰的谱线作为元素的分析线,结果选用Pb220.353作为分析谱线使用。在进行谱线选择时,需要注意背景及干扰情况,选择尽量将背景位置定在尽可能平坦的位置,注意要无小峰,同时左右背景的平均值尽可能与谱峰背景强度一致,见图1。
图1 Pb元素的谱线选择及背景扣除
2.4 样品酸度的影响
实际测试中,样品酸度对铅元素氢化物发生影响很大。李明容等做了酸度对氢化物发生-原子荧光法测定Pb的影响,结果见图2所示。Pb的氢化物发生只在特定的酸度条件下才会达到峰值。因此实验中酸度的影响必须**考虑,否则实验过程可能根本没有信号。目前还不太清楚酸度对铅氢化物发生原理的影响。
图2 酸度对Pb和Cd原子荧光强度的影响。
酸度的影响分为样品本身酸度和载流的酸度。
2.4.1 样品酸度的影响
实验过程中保持一定的条件,通过改变样品中酸度的大小,通过氢化物发生与ICP联用,测定铅强度的变化。保持铅8ng/ml,载流酸度0.2%,样品中浓度为0.4mg/ml,硼氢化钾浓度为15mg/ml, 铁20mg/ml,氢氧化钾6mg/ml,载气0.2ml不变。由表2和图3可知,酸度对氢化物发生测铅的影响很大,酸度在1%左右的时候强度达到值。
表1 样品酸度的影响
样品酸度 强度
0.1% 22
0.5% 253
1% 493
2% 37
3% 3
图3 样品酸度的影响
2.4.2 载流酸度的影响
使用载流酸度对样品酸度进行微调,实验样品中保持样品中酸度1%不变,改变载流酸度。如表与图所示。
表2 载流酸度的影响
载流酸度 强度
0 346
0.1% 361
0.2% 373
0.3% 336
0.4% 271
0.5% 222
0.6% 185
0.7% 171
0.8% 140
1% 98
2% 55
3% 47
4% 47
5% 51
6% 35
图4 载流酸度的影响
2.5 浓度的影响
的作用是作为氧化剂存在,首先它的存在可能氧化铅原子,使得铅原子从正二价变为正四价,其次氧化剂中带负电荷的原子(如氧原子)进攻H_3 B···H键,减弱H_3 B···H的稳定性,使得铅的氢化物更易形成。保持铅8ng/ml,样品酸度1%,载流酸度0.2%,样品中硼氢化钾浓度为15mg/ml, 铁20mg/ml,氢氧化钾6mg/ml,载气0.2ml不变的浓度与强度的关系表和图。有图可知,浓度在0.4mg/ml时强度达到值。
表3 载浓度的影响
图5 载浓度的影响
2.6 铁的浓度影响
铁的结构式如图所示,它的作用是借助共轭π键移去金属上过量的负电荷,增强H···Pb键的稳定性,同时铁也有一定的氧化性。
图6 铁结构式
保持铅8ng/ml,样品酸度1%,4mg/ml,载流酸度0.2%,样品中硼氢化钾浓度为15mg/ml,,氢氧化钾6mg/ml,载气0.2ml不变,铁的浓度与强度的关系表和图。有图可知,铁浓度在20mg/ml时强度达到值。
表4 铁浓度的影响
铁浓度mg/ml 强度
图7 铁浓度的影响
2.7 硼氢化钾的浓度影响
硼氢化钾是重要的还原剂,与铅反应生成铅烷。保持铅8ng/ml,样品酸度1%,4mg/ml,载流酸度0.2%,样品中铁浓度为20mg/ml,,氢氧化钾6mg/ml,载气0.2ml不变,硼氢化钾的浓度与强度关系见表与图。有图可见,在20mg/ml以上,到达平台期,选择一个相对较大的强度的浓度,即30mg/ml。
表5 硼氢化钾浓度的影响
硼氢化钾浓度mg/ml 强度
图8 硼氢化钾浓度的影响
2.8载气流量的影响
载气对铅烷有着较大的影响,若流量过大,则相当于将铅烷气体稀释,测量结果强度较低,若流量过小,铅烷不能完全进入等离子体中,测量结果强度仍然较低。因此需要保持一个较好的载气流速,以期获得强度。保持铅8ng/ml,样品酸度1%,4mg/ml,载流酸度0.2%,样品中铁浓度为20mg/ml,,氢氧化钾6mg/ml,硼氢化钾浓度为30mg/ml,载气变化与强度的关系如表与图所示。因此选择载气0.6L/min为好。
表6 载气流量的影响
载气流量(L/min) 强度
图9 载气流量的影响
2.9功率的影响
保持铅8ng/ml,样品酸度1%,4mg/ml,载流酸度0.2%,铁浓度为20mg/ml,,氢氧化钾6mg/ml,硼氢化钾浓度为30mg/ml,载气0.6L/min,功率变化对铅的影响见表与图。由图与表可知,功率越大,强度越大。但由于强度太大对仪器寿命有影响,因此强度够用即可,选择1250W。
表7 功率的影响
功率(W) 强度
图10 功率的影响
2.10小结
结合以上条件,得出实验条件见表
表8 实验条件汇总
实验条件 浓度
样品酸度 1%
载流酸度 0.2%
浓度 0.4mg/ml
铁浓度 20mg/ml
氢氧化剂浓度 6mg/ml
载气 0.6L/min
功率 1250W
3 结果讨论
3.1校准曲线
实际样品按照本文方法进行分析,标准曲线线性相关系数为0.99997,校准曲线如图1.
图11 Pb元素氢化物发生校准曲线
3.2 测定结果
饮用水溶液实际样品按照本文方法进行分析,其结果见表3.为验证方法准确性,使用ICP-MS进行方法间比对。其结果见表1
表9 实际样品分析结果(ng/mL)
样品名称 ICP-AES ICP-MS GB 5749-2006
J0 40.29 47.39 10
J1 (0.70)a 0.65 <10
J2 (0.80)a 0.75 <10
备注a:括号内为参考值,低于测定下限2.3 ng/ml。
3.3方法检出限
按样品空白连续测定11次,以3倍的标准偏差计算方法检出限,10倍的标准偏差计算方法测定下限。
表10 铅元素氢化物发生检出限(ng/mL)
元素 检出限 测定下限
Pb 0.7 2.3
3 结论
本方法采用氢化物发生-ICP-AES联用的方法测定生活饮用水中的Pb元素,检出限低,为0.7ng/ml,远低于国家标准。适用于生活饮用水中Pb元素的。
-/gbahabd/-

http://xjr003.cn.b2b168.com

产品推荐