国产ICP光谱性能咋样 ICP仪价格
  • 国产ICP光谱性能咋样 ICP仪价格
  • 国产ICP光谱性能咋样 ICP仪价格
  • 国产ICP光谱性能咋样 ICP仪价格

产品描述

温度控制<0.1℃ 大面积CCD器 测试范围165nm-950nm 光源类型固态光源 品牌钢研纳克
电感耦合等离子体发射光谱法测定废弃稀土荧光粉中的铅、镉、汞
摘要:研究了利用电感耦合等离子体发射光谱法测定废弃稀土荧光粉中Pb、Cd、Hg的含量。考察了共存元素的干扰情况,选定了各元素分析谱线。结果表明,各元素高、低含量的回收率在83 %~99%之间;铅(w/%)的测量范围为0.0001%~5%;镉(w/%)为0.0001%~5%;汞(w/%)为0.01~1%。
关键词:电感耦合等离子体发射光谱法;废弃稀土荧光粉;铅;镉;汞
近年来我国稀土发光材料等典型稀土产品的报废量日益增加,仅2010年我国废弃稀土荧光粉产生量就达8000吨,利用潜力巨大,一些家电回收和环保企业已建立一些回收利用生产线。就废弃稀土荧光粉的来源而言,目前主要是废弃荧光灯和废弃阴极射线管器荧光粉两大类。其可能含有的稀土元素、其他化学元素以及回收过程可能引入的部分杂质元素,总数可达到十几种。尤其是废弃荧光灯中通常混有汞、铅元素,废弃显示器荧光粉中可能混有镉、铅元素,一旦废弃处置不当,较易造成环境污染,而且也会给循环利用带来诸多问题。建立针对荧光粉废料中上述几种重金属元素的分析方法标准,将为判断废弃荧光粉的环境影响、制定相应的处理处置工艺和循环利用技术路线提供可靠依据。
钢研纳克公司生产的高分辨率顺序扫描型plasma-1000型ICP-AES光谱仪具有灵敏度高、检出限低、多元素同时测定的特点,本文利用该仪器成功测定了废弃稀土中的Pb、Cd、Hg,为已经发布的ICP-AES法测定废弃稀土荧光粉中的Pb、Cd、Hg标准奠定了基础。
1 实验部分
1.1仪器及主要参数
仪器:Plasma 1000(钢研纳克技术有限公司);主要参数:RF功率:1.2kW;冷却气流量:14 L/min;辅助气流量:1.2 L/min;载气流量:0.7L/min;观测高度:11mm。
1.2 试剂
盐酸(优级纯);水为二次去离子水。
1.3 校准曲线的配制
在7个100mL容量瓶中,分别加入钇基体溶液,然后分别按表1加入Pb、Cd、Hg的标准溶液(分别为1µg/mL,10µg/mL,100µg/mL),形成系列校准溶液。
表1 校准曲线的配制
加标量/ml
元素 标准1 标准2 标准3 标准4 标准5 标准6
Pb 0 1 3 5 8 10
Cd 0 1 3 5 8 10
Hg 0 1 3 5 8 10
1.4 试样溶液的制备
1.4.1 将试料混合均匀,以保证试料的均匀性。
1.4.2 根据废弃稀土荧光粉中Pb、Cd、Hg的含量称样0.1~1.0g,加酸溶解并稀释至相应体积的容量瓶中。
2 结果与讨论
2.1 分析线波长的选择
对被测元素的多条谱线进行了考察,通过绘制系列标准的轮廓图和校准曲线,分析各条谱线受稀土元素的干扰情况、校准曲线的相关系数、信噪比和谱线强度等,分别选择了Pb220.353、Cd226.502、Cd228.802、Hg184.887等干扰小、灵敏度适中的分析谱线。
2.2 共存元素干扰情况
实验结果表明,在选定的分析线波长下,50µg/mL的每一共存元素对各被测元素产生的干扰量均小于0.10µg/mL。因此,可视为共存元素对被测元素无干扰,具体结果见表2。
表2 共存元素对Pb、Cd、Hg测定时的干扰量
被测元素及谱线 对各待测元素的干扰量(µg/mL)
Ba Zn Fe Ca Mg Mn Ni La Ce
Pb220.353 0 0 0 0 0 0 0 0 0
Cd226.502 0.0015 0.0023 0.0096 0.0041 0.0018 0.0023 0 0.0015 0.0019
Cd228.802 0 0 0 0.0044 0.0016 0.0007 0 0 0
Hg184.887 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
 被测元素及谱线 对各待测元素的干扰量
Tb Dy Y Gd Eu Al Pb Cd Hg
Pb220.353 0 0.052 0 0 0 0 - 0 0
Cd226.502 0.0012 0 0.0012 0.001 0 0.00021 0.0015 - 0.0012
Cd228.802 0.004 0 0 0 0 0 0 - 0.00033
Hg184.887 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 -
2.3仪器功率的选择
为了考察功率对测定的影响,在功率为1000W、1100W、1200W、1300W和1400W时对各实际样品进行测定,由于各谱线的发射强度随着功率的提高变化不大,故本方法选择仪器的功率为1200W。
2.4 加标回收率实验
于本方法要求的上、下限附近,在选定的测定条件下完成Pb、Cd、Hg的加标回收试验,回收率结果见表3。由表可见,各元素回收率在83%~99%之间,满足需要。
表3 回收率试验
元素 加入量/(μg/mL) 回收率/% 加入量/(mg/mL) 回收率/%
Pb 0.01 85.2 0.5 96.5
Cd 0.01 94.5 0.5 98.9
Hg 0.1 83.5 0.1 96.8
2.5对照实验
在选定的测定条件下,将各样品的测定结果与采用其他方法得到的测定结果进行对照,结果基本一致,见表4。
表4 对照试验
样品 方法/参考值 含量w/%
Pb Cd Hg
1# 本法 0.00062 0.0010 0.0030
参考值 0.00054 0.00092 0.0025
2# 本法 0.052 0.078 0.029
参考值 0.052 0.075 0.024
3# 本法 1.26 1.83 0.14
参考值 1.25 1.85 0.12
3 结论
采用Plasma1000型等离子发射光谱仪测定了废弃稀土荧光粉中铅、镉、汞量,加标回收率在83~99%之间,实际样品测定结果与参考值一致,表明本法灵敏度高、结果准确性好、线性范围宽,因此可用来快速测定废弃稀土荧光粉中Pb、Cd、Hg的含量,本实验工作也为国家标准方法的研制奠定了基础。
国产ICP光谱性能咋样
Plasma1000型ICP光谱仪测定钆铁合金
稀土和非稀土元素
1 前言
钆铁合金主要用作钕铁硼永磁体的添加剂,用以改善磁体性能.同时也用于核反应堆的制管材料,磁致冷的工作介质和磁光记录材料储氢合金基质,以及用于特种钢和有色合金添加剂等,随着其在材料科学领域的应用越来越广泛,钆铁合金所含杂质对材料的性能影响就显得日益重要,如何准确测定钆铁合金中的杂质元素是值得研究的一个重要课题。
2 仪器简介杂质含量
Plasma1000型电感耦合等离子体原子发射光谱仪简称ICP-AES,是我公司推出的单道顺序扫描光谱仪,本应用报告的所有测量结果均来自这种ICP光谱仪。作为一种大型精密无机分析仪器,它具有以下特点:拥有多项**技术;自动匹配调谐 ;采用进口的关键部件;较小的基体效应; 测量范围宽;良好的测量精度;分析速度快;分析元素之多;检出限低;功能强大界面友好的分析软件;友好的人机界面;强大的数据处理功能;对输出数据可随机打印,也可自动生成Excel格式的结果报告。
3 样品制备
根据所测元素含量的不同,选择合适的称样量,样品加酸低温加热至溶解完全,冷却至室温,移入容量瓶中稀释至刻度,混匀,待测。
4 仪器参数
功率1.15 Kw,冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min,蠕动泵泵速20 rpm,观测高度距功率圈上方12 mm,同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
5分析结果
5.1 分析谱线的选择
由于稀土元素谱线复杂,因此在谱线选择上要充分考虑其光谱干扰,在谱线选择上采用对所选谱线进行轮廓扫描的方法,即用纯试剂找到被测元素的峰位,再此峰位及其附近扫描实际样品,终确定合适的谱线及在其合适的位置扣除背景。
表1主量元素Gd、Fe分析线(nm)
元素 Gd Fe
谱线 336.223 259.94
表2稀土杂质元素分析线(nm)
元素 La Ce Pr Nd Sm Eu Tb Dy Ho Er Tm Yb Lu Y
谱线 408.672 446.021 414.311 401.225 363.429 412.970 384.873 353.170 345.600 326.478 346.220 289.138 261.542 371.030
表3非稀土杂质元素分析线(nm)
元素 Si Ca Mg Al Mn
谱线 251.612 393.366 279.553 396.152 257.61
5.2 方法的检出限
以空白溶液测定10次的标准偏差的3倍所对应的浓度作为检出限。各杂质元素的检出限见下表。由此可见, 此检出限可以满足日常要求。
表4稀土杂质元素检出限(µg/ml)
元素 La Ce Pr Nd Sm Eu Tb Dy Ho Er Tm Yb Lu Y
检出限 0.01 0.04 0.04 0.02 0.03 0.003 0.06 0.004 0.02 0.02 0.001 0.006 0.002 0.002
表5 非稀土杂质元素检出限(µg/ml)
元素 Si Ca Mg Al Mn
检出限 0.02 0.0002 0.0004 0.02 0.001
5.3回收试验
按照选定的ICP工作条件, 在样品中分别加入混标溶液进行加标回收试验, 回收试验结果列于表6。由表6可知, 待测元素的加标回收率在94.0%~110.0 %, 表明本方法准确可靠。
表6 方法的加标回收(%)
元素 本底值 加标量 测定均值 回收率
/(mg /L) /(mg /L) /(mg /L) /%
Gd 144.40 10.00 153.8 94.0
Fe 54.84 10.00 65.4 105.6
La 0.04 1.00 1.06 102.0
Ce 0.04 1.00 1.08 104.0
Pr 0.02 1.00 1.08 106.0
Nd 1.16 1.00 2.2 104.0
Sm 0.94 1.00 1.88 94.0
Eu 0.12 1.00 1.1 98.0
Tb 0.24 1.00 1.2 96.0
Dy 0.12 2.00 2.02 95.0
Ho 0.24 1.00 1.2 96.0
Er 0.26 1.00 1.22 96.0
Tm 0.14 1.00 1.24 110
Yb 0.04 1.00 1.08 104
Lu 0.04 1.00 1.12 108
Y 0.5 1.00 1.44 94.0
Si 9.20 5.00 14.04 96.8
Ca 0.08 1.00 1.062 98.2
Mg 0.97 1.00 1.94 97.0
Al 10.00 5.00 14.92 98.4
Mn 3.40 1.00 4.42 102
5.4实际样品分析
对钆铁实际样品按照本文方法进行分析,分析结果见表7
表7 实际样品分析结果(%)
元素 La Ce Pr Nd Sm Eu Tb Dy Ho Er Tm
含量 0.002 0.002 <0.001 0.058 0.047 0.006 0.012 0.006 0.012 0.013 0.007
元素 Yb Lu Y Si Al Ca Mg Mn Gd Fe  /
含量 0.002 0.002 0.025 0.092 0.10 0.0008 0.0097 0.034 72.19 27.42  /
6 结论
以上试验表明,Plasma1000型ICP光谱仪测定钆铁合金中的稀土元素和非稀土元素是可行的。该方法简便、快速,可以满足产品分析的要求。
国产ICP光谱性能咋样
国产单道扫描ICP-AES发射光谱仪直接测定镨钕镝合金中的非稀土杂质
摘要:通过选择合适的分析谱线和基体匹配与背景扣除法进行干扰校正,研究建立了国产单道扫描ICP光谱仪直接测定镨钕镝合金中的非稀土元素Al、Ca、Fe、Mg和Si的方法。结果表明,应用本法对客户的三个样品进行,测定结果与参考值一致。本法可用于镨钕镝合金中非稀土杂质元素的。
关键词:ICP-AES;镨钕镝合金;非稀土元素
镨钕镝合金是高性能钕铁硼材料的主要原料之一,准确测定其中各元素的含量十分必要。ICP-AES以其检出限低,精密度好,动态范围宽,分析速度快等优点在分析领域已得到了广泛的应用。本文研究使用国产单道扫描ICP-AES发射光谱仪直接测定镨钕镝合金中的Al、Ca、Fe、Mg和Si等非稀土元素的方法,并对客户委托的样品进行了测试,获得满意结果,本法具有一定的实用价值。
1 实验部分
1.1 仪器及参数
Plasma1000单道扫描电感耦合等离子体光谱仪(钢研纳克技术有限公司);高纯氩(纯度≥99.999%),光栅为3600条/mm。参数设置:功率1.15 kW,冷却气流量18.0 L/min,辅助气流量0.8 L/min,载气流量0.2 L/min,蠕动泵泵速20 rpm,观测高度距功率圈上方12 mm,同轴玻璃气动雾化器,进口旋转雾室,三层同轴石英炬管,中心管2.0 mm。
1.2 试剂
盐酸,ρ≈1.18 g/ml,优级纯,北京化工厂;硝酸,ρ≈1.42 g/ml,优级纯,北京化工厂;Al、Ca、Fe、和Mg的标准溶液质量浓度均为1000 µg/ml,Si的标准溶液质量浓度均为500 µg/ml,国家钢铁材料测试中心;所用溶液用水均为二次去离子水。
1.3 样品处理
称取2.5 g试料,精确至0.0001 g。置于250 ml烧杯中,加20 ml王水,低温加热至溶解完全,冷却至室温后移入100 ml容量瓶中,定容,混匀。再从上述100 ml容量瓶中准确移取10.00 ml溶液于50 ml容量瓶中,稀释至刻度,摇匀,待测。随同试料做空白试验。
2 结果与讨论
2.1分析谱线的选择
在谱线选择上要充分考虑其光谱干扰,对所选谱线进行轮廓扫描的方法,即用纯试剂找到被测元素的峰位,在此峰位及其附近扫描实际样品,观察其他元素在该谱线附近的谱线位置和强度情况,选择在该谱线附近其他元素无谱峰或通过背景扣除可以消除的谱线,终确定合适的谱线见表1。
表1 推荐的分析线
元素 分析线/nm
Al 237.312
Ca 393.366
Fe 259.940
Mg 279.553; 280.271
Si 251.612
2.2 校准曲线线性及精密度试验
根据被测元素的含量范围配制系列标准溶液,各待测元素的线性相关系数见表2。此外,对样品2进行6次平行测定,相对标准偏差也列于表2。
表2 各待测元素线性相关性及精密度
元素 相关系数 RSD/%(n=6)
Al 1.0000 1.94
Ca 0.9998 1.52
Fe 0.9995 2.31
Mg 0.9999 2.42
Si 0.9996 1.67
2.3 实际样品测试及结果对照
采用所建立的方法对客户委托的实际样品进行了测试,为检验测试结果的准确性,将3个客户委托的样品的结果与其他方法提供的测试结果进行了对照,结果及比对见表4。结果表明,采用本法的结果与其他方法提供的结果基本一致。
表3 本法测定结果与其他方法的参考值比对
样品 方法/参考值 含量,w/%
Al Ca Fe Mg Si
1号样品 本法 0.123 <0.050 0.140 0.185 0.032
参考值 0.149 <0.050 0.155 0.176 0.034
2号样品 本法 0.204 0.061 0.444 0.036 0.053
参考值 0.234 0.063 0.447 0.035 0.052
3号样品 本法 0.424 0.081 0.612 0.048 0.308
参考值 0.425 0.079 0.608 0.048 0.302
3 结论
以上试验结果表明,应用国产ICP-AES发射光谱仪测定镨钕镝合金中的非稀土元素是可行的。该方法简便、快速、结果准确,精密度好,完全满足定镨钕镝合金产品的要求。
国产ICP光谱性能咋样
Nd-Fe-B样品中稀土元素和非稀土元素测试
研究报告
备注:
样品来源于客户演示样品,要求测试样品中的Pr、Nd、Dy、Ho、Al、B、Co、Cu、Ga,针对3台仪器做了相关的谱线对比和数据对比。
一、样品要求及前处理
共2个样品,磁材。
二、实验室准备
2.1实验室环境:22℃,相对湿度:30%;
2.2采用 Plasma 2000;
2.3氩气纯度≥99.999%;
2.4水:全部均以二次水为标准;
三、样品测试
1试料
根据不同待测元素,试样的称样量不同。
2测定次数
称取2份试料进行平行测定,取其平均值。
3空白试验
随同试料做空白试验。
4分析试液的制备
称取样品0.1000g,加入2mL HCl和0.2mLHNO3,置于120℃加热板,待反应完全后,冷却定容至100mL 玻璃容量瓶中,备用,用于B、Al、Cu、Co、Ga、Dy、Ho。
称取样品0.0100g,加入2mL HCl和0.2mLHNO3,置于120℃加热板,待反应完全后,冷却定容至100mL 玻璃容量瓶中,备用,用于Pr、Nd。
5配制校准曲线溶液(%)
元素 S0 S1 S2 S3
基体0.07gFe和0.02gNd,2mL HCl和0.2mLHNO3 B、Al、Cu、Co、Ga、Dy、Ho 0 0.1% 0.5% 1%
基体0.007gFe,2mL HCl和0.2mLHNO3 Pr 0 4% 6% 8%
Nd 0 15% 20% 25%
6谱线选择(%)
6.1 725仪器谱线选择
元素 谱线 谱线选择 线性
Nd 401.224、406.108、410.945、430.357 401.224的谱峰有明显干扰,峰形明显不是高斯峰,剔除 406.108谱峰有明显干扰,峰形明显不是高斯峰,剔除 430.357底部有明显干扰,导致数据偏高,剔除 终选择410.945
谱线线性0.9999
Pr 406.281、410.072、422.293 406.281底部左侧有明显干扰,测试数据偏高,剔除 410.072和422.293两条谱线无干扰且线性良好,都可以选择
谱线线性0.9999
Al 396.152、308.215、237.312 396.152在低含量有明显干扰,峰位不正,剔除 308.215存在明显干扰,剔除 237.312峰形良好,选择
谱线线性0.9999
B 208.889、208.956、249.678、249.772 249.772处,样品存在明显干扰,剔除
其余三条谱线正常
谱线线性0.9999
Co 228.615
、238.892 两条谱线均可以使用,但是建议用228.615(信噪比高)
谱线线性0.9999
Cu 213.598、224.700、324.754、327.395 327.395底部右侧有干扰峰,造成样品测试结果偏高,剔除 213.598谱线正常,建议选用 224.700谱线左侧底部有干扰,但样品测试数据正常 324.754谱线底部左侧有干扰,但样品测试数据正常 谱线线性0.9999
Dy 340.780、353.171 340.780谱线正常,建议选用
353.171谱线在低含量段干扰较大,剔除
谱线线性0.9999
Ga 294.363、417.204 294.363谱线正常,建议选用
417.204谱线干扰较大,剔除
谱线线性0.9999
Ho 339.895、341.644、345.600 339.895底部左侧有小干扰,对低含量影响较大,剔除 341.644谱线正常,建议选用
345.600底部左侧有小干扰,对低含量影响较大,剔除
谱线线性0.9999
6.2 1000仪器谱线选择
元素 谱线 谱线选择 线性
Nd 401.224、406.108、410.945、430.357 401.224基本正常
406.108基本正常
430.357基本正常
410.945基本正常
谱线线性0.9999
Pr 406.281、410.072、417.939 417.939底部右侧有明显干扰,剔除
410.072和406.281两条谱线无干扰且线性良好,都可以选
择 但测试数据上看,406.281数据偏高,因此选择410.072,谱线线性0.9999
Al 396.152、308.215、237.312 396.152底部有明显干扰,剔除 308.215底部有明显干扰,剔除
237.312峰形良好
谱线线性0.9999
B 208.889、208.956、249.678、249.772 249.772处,样品存在明显干扰,剔除 其余三条谱线正常
谱线线性0.9999
Co 238.636
、238.892 两条谱线均可以使用,但是建议用238.636(信噪比高)
谱线线性0.9999
Cu 213.598、224.700、324.754、327.395 327.395底部左侧有干扰峰,造成样品测试结果偏高,剔除 213.598谱线正常,建议选用 224.700谱线左侧底部有干扰,但样品测试数据正常 324.754谱线底部左侧有干扰,但样品测试数据正常 谱线线性0.9999
Dy 353.171 353.171谱线在低含量段干扰较大,剔除
谱线线性0.9999
Ga 294.364、417.204 294.364谱线正常,建议选用
417.204谱线干扰较大,剔除
谱线线性0.9999
Ho 339.898、341.644、345.600 339.898底部左侧有小干扰,对低含量影响较大,剔除 341.646谱线正常,建议选用
345.600底部左侧有小干扰,对低含量影响较大,剔除 谱线线性0.9999
6.3 2000仪器谱线选择
元素 谱线 谱线选择 线性
Nd 401.224、406.108、410.945、430.357 401.224、406.108、430.357、410.945谱线干扰且线性良好,都可以选择(由于有725做依据,怀疑是仪器分辨率较差导致谱线看不到干扰) 谱线线性0.9999
Pr 406.281、410.072、422.293 406.281、410.072和422.293谱线干扰且线性良好,都可以选择(由于有725做依据,怀疑是仪器分辨率较差导致谱线看不到干扰) 谱线线性0.9999
Al 396.152、308.215、237.312 308.215存在明显干扰,剔除
396.152、237.312峰形良好,选择
谱线线性0.9999
B 208.889、208.956、249.678、249.772 249.772处,样品存在明显干扰,剔除
其余三条谱线正常
谱线线性0.9999
Co 228.615
、238.892 两条谱线均可以使用
谱线线性0.9999
Cu 213.598、224.700、324.754、327.395 224.700底部右侧有干扰峰,造成样品测试结果偏高,剔除 213.598、327.395、324.754谱线正常,建议选用 谱线线性0.9999
Dy 340.780、353.171 340.780、353.171谱线正常,建议选用
谱线线性0.9999
Ga 294.364、417.204 294.364谱线正常,建议选用
417.204谱线干扰较大,剔除
谱线线性0.9999
Ho 339.895、341.644、345.600 339.895、341.644谱线正常,建议选用
345.600底部左侧有小干扰,对低含量影响较大,剔除 谱线线性0.9999
7结果(%)
725数据
元素 Pr Nd Al B Co Cu Ga Dy Ho
标准推荐谱线 440.884 445.157 237.312 208.889、208.956、249.773 228.615、237.862 324.754、327.395、224.700 294.363 387.212、340.780 341.646
谱线 nm 410.072 410.945 237.312 249.678 228.615 213.598 294.363 340.780 341.644
38SH A.V. 6.780 22.08 0.652 0.781 0.408 0.183 0.138 1.995 0.221
N48 A.V. 6.869 22.01 0.253 0.756 0.387 0.1339 0.131 无 无
1000数据
元素 Pr Nd Al B Co Cu Ga Dy Ho
谱线 nm 410.072 406.281 430.358 410.946 406.109 401.225 237.312 249.678 238.636 213.598 294.364 353.170 341.644
38SH 1 6.83 6.82 22.57 21.69 22.54 22.41 0.862 1.003 0.610 0.221 0.198 2.572 0.283
2 6.89 7.10 22.49 21.83 22.67 22.48 0.857 1.004 0.629 0.232 0.197 2.578 0.290
A.V. 6.86 6.96 22.53 21.76 22.61 22.45 0.860 1.004 0.620 0.226 0.198 2.575 0.287
N48 1 7.58 7.15 23.09 22.36 22.66 22.96 0.361 0.997 0.616 0.178 0.199 无 无
2 7.52 7.15 23.53 22.37 22.58 22.48 0.360 0.982 0.603 0.167 0.191 无 无
A.V. 7.55 7.15 23.32 22.37 22.62 22.72 0.361 0.989 0.609 0.173 0.195 无 无
2000数据
元素 Pr Nd Al B Co Cu Ga Dy Ho
谱线 nm 406.281 410.072 430.358 401.225 237.312 249.678 238.892 324.754 294.364 340.716 341.646
38SH 1 6.78 6.77 21.80 21.84 0.818 0.991 0.516 0.233 0.144 2.468 0.295
2 6.80 6.79 21.85 21.89 0.822 0.997 0.524 0.235 0.147 2.467 0.298
A.V. 6.79 6.78 21.83 21.86 0.820 0.994 0.520 0.234 0.146 2.468 0.296
N48 1 7.25 7.23 23.07 23.06 0.288 0.963 0.496 0.178 0.128 无 无
2 7.44 7.37 23.03 23.16 0.280 0.957 0.492 0.176 0.126 无 无
A.V. 7.35 7.30 23.05 23.11 0.284 0.960 0.494 0.177 0.127 无 无
反测 8—8.04 8—7.9565 25—24.97 25—25.05 0.5—0.533 0.5—0.512 0.5—0.499 0.5—0.497 0.5—0.516 0.5—0.521 0.5—0.524
-/gbahabd/-

http://xjr003.cn.b2b168.com

产品推荐