等离子体光电直读光谱仪 直读光谱仪参数
  • 等离子体光电直读光谱仪 直读光谱仪参数
  • 等离子体光电直读光谱仪 直读光谱仪参数
  • 等离子体光电直读光谱仪 直读光谱仪参数

产品描述

光学系统帕邢 - 龙格架发 光栅焦距750mm 刻线2400 条 /mm 谱线范围170-500nm 一级色散率0.55nm/mm 二级色散率0.275nm/mm 分辨率优于 0.01nm
光谱仪在分析的过程中,电火花燃烧样品表面会产生金属粉尘,大部分的金属粉尘都会随着氩气吹扫排到过滤罐中,然而也会有少部分金属粉尘会停留在激发室里,时间长了会堆积污染激发室和光学透镜,引起测量数据波动,误差变大,所以需要定期的清理来改善激发室环境,改善测量数据。
光谱仪在使用的过程中,会有一部分金属粉尘、金属屑、灰尘掉落到仪器内部电路模块上,如果不及时清理可能会导致电路模块短路,一些核心的电路板损坏维修费用会很高,所以需要及时的清理仪器内部灰尘,保证电路的正常运行。
仪器使用年限长了后,仪器内部一些器件会发生老化,这部分器件需要及时的发现更换,否则会引起严重的光谱仪故障。
化验员在使用过程中可能会存在一些不规范的操作,这些操作可能会导致测试误差,严重的误操作也可能会导致光谱仪故障,的方式是能和的光谱沟通交流,让发现化验员的不规范操作,及时纠正,确保仪器的正常使用。
等离子体光电直读光谱仪
光谱分析的种类和分析的内容
在日常生活中,可以见到各种不同的,如红、黄、兰、白色光。太阳光经三棱镜后,会产生红、橙、黄、绿、青、兰,紫排列的色带,还有人们肉眼所看不见的光如紫外线,红外线,γ射线等。
从光谱分析的观点重要的谱线波长是在100—12000*10-1nm之间,这个区间又分为几个光谱范围。
从广义讲,各种电磁辐射都属于光谱,一般按其波长可分为:
γ射线  0.00005—0.14nm
x射线  0.01—10nm
微波波谱  0.3mm—lmm
而光谱区可分为:
真空紫外区10—200nm
近紫外区200~380nm
可见光谱区  380—780nm
近红外光谱  780nm一3μm
远红外光谱  3—300μm
注:1米 (m)=103毫米 (mm)=106微米 (μm)
光电直读光谱分析应用的元素波长,大部分在真空紫外区和近紫外区多。
我们通常所讲到光谱仅指光学光谱而言,从物质(固、液、气)加热或用光或用电激发射光谱时得到三种类型的光谱。线光谱是由气体状态下的原子或离子经激发而得到的,通常呈现分立的线状所以称线光线,就其产生方式而言又可分为发射光谱(明线)和吸收光谱(暗线)两种,因此光谱分析又分为发射光谱分析和原子吸收光谱分析。如果是原子激发产生的光谱,称原子光谱,如果离子激发所产生的光谱称离子光谱。带状光谱是原子结合成分子中发出的或两个以上原子的集团发出的,通常呈带状分布,是分子光谱产生,如在光谱分析中采用炭电极,在高温时,炭与空气中氮化合生成氰带(CN)分子,当氰分子在电弧中激发时产生的光谱,称氰带。连续光谱是从白热的固体中发出的,是特定的状态下原子分子中发出来的,所以连续光谱是无限数的线光谱或带光谱体。
我们通常讲的光谱分析,一般是指“原子发射光谱分析”,光电光谱分析中元素波长都是元素的原子光谱和离子光谱。
现在光电光谱仪主要分为两大类。非真空型的光电光谱仪的工作波长范围在近紫外区和可见光区。真空光电光谱仪工作波长扩展到远真空紫外120.0nm,因而利用这个波段中氮、碳、磷、硫等谱线的灵敏度来分析钢中的重要元素。
等离子体光电直读光谱仪
干扰效应。    干扰效应也称基体效应,又称共存元素、*三元素或伴随物效应,指的是在样品中除了分析物外所有其他成分的影响,在光谱分析中能引起谱线的强度变化,导致分析结果产生一些误差,这种干扰效应是光谱分析中需要高度重视的一个问题。
分析试样和标样影响。    在实际工作中,分析试样和标样的冶炼过程和物理状态存在一定的差异,所以导致校准曲线经常出现变化,一般情况下标样大多处于锻造和轧制状态,分析样品大多处于浇铸状态,为有效防止试样的冶金状态变化影响分析的结果,经常使用的控制试样要保证与分析试样的冶金过程和物理状态保持一致,对试样的分析结果进行的控制。
取样方法影响。    取样方法和对样品的处理是光谱分析中影响分析精度和准确度的重要而关键的因素。炉前分析时要对炉中铸态的钢样采取快速红切的方式进行,如果的样品存在裂纹、杂质和气孔等问题,要重新进行取样。对于低碳钢材料要将其置入流水中进行骤降温处理,确保样品组织结构形成马氏体和奥氏体,从而有效提升碳的分析结果的准确性。但要引起注意的是,对于高碳样品进行切割后,不能采取骤降温的方式进行处理,防止因为骤降温引发裂缝发生。另外,对于铸铁和球墨铸铁的和分析,要确保所的样品进行白口化,并确保取样的温度、脱模时间、冷却速度标准和统一。另外不同材料的分析,要选择适合的研磨工具,通常使用氧化铝砂轮片进行打磨,要注意打磨的颗粒处于中等状态,不能太粗或太细。需要强调的是,试样样品的表面要打磨掉0.5至1.5毫米,除去样品表面的氧化层,防止结果的不准确,氧化层对碳的分析结果的准确性影响更大。
其它因素影响。    光电光谱分析存在的误差在所难免,要正确的认识误差,查找误差存在的原因,采取有效的措施消除误差。光谱分析误差除受上面几种因素的影响外,还有以下几种因素的影响:
1.人的因素:    操作者的质量意识、责任意识、操作技术、水平高低、熟练程度等都会影响的效果;
2.设备因素:    比如设备的状态是否优良、是否定期和维护,光源性能稳定性如何,氩气供气系统是否稳定,试样加工设备状况是否正常、是否对加工设备进行定期维护保养等,都会一定程度上影响结果的准确性。
3.样品试样因素:比如待测试样成分是否均匀,是否具有试样的代表性,热处理状态和组织结构状态是否正常,标准试样的成分和控制试样的成分是否均匀,成分含量的标准值是否可靠,组织结构是否统一、磨制样品方法是否规范、效果是否有效等等,都是影响其效果的关键因素。
4.分析方法因素:在分析方法上,分析曲线制作及拟合程度是否达标,标准化过程及效果是否,控样选择是否规范,定值是否严格等等,都一定程度上影响着效果。
5.环境因素:比如所在分析室的温度、湿度是否正常,受否受电磁干扰的影响,所处环境是否清洁卫生,是否具备要求的条件稳定的操作环境,只有有了良好的环境,才能为结果的准确性提供**。
等离子体光电直读光谱仪
随着使用时间的推移,光室、光学器件会发生非常微小的形变,就是这些微小的形变都会引起光路细微的漂移,从而导致仪器测试精度和准确度的改变,而且这个漂移会随着时间的延迟表现的越来越明显,如果要再次提高仪器的性能就需要人为的调整参数来修正这部分漂移,从而改善光谱仪的性能。
http://xjr003.cn.b2b168.com

产品推荐