像素数4096
像素尺寸7μm
光栅焦距500mm
刻线2700 条 /mm
线分辨率0.7407nm/mm
像素分辨率0.005926nm
谱线范围130-800nm
虽然目前CCD还有一些不足之处,但是大家认为CCD在光电直读光谱仪中的应用是值得期待的。PMT到现在已经发展60多年了,是一种经典成熟的技术。而CCD技术正处于飞速的发展变化之中,可以预期CMOS(互补金属氧化物半导体)技术很快会应用于CCD当中,这些技术的不断发展会促使CCD发展到更高的水平。近些年CCD器件发展已经相当成熟,能够满足一般的分析要求,针对细分市场,各种用途的CCD不断产生。CCD与PMT结合是目前解决全谱并满足微量和痕量分析的优选择,但同时满足两种类型器的采样控制和系统的结合目前仍然是该类仪器的制造难点。
所以说,CCD和PMT的存在,在目前为止都是合理且必要,而的COMS技术也在进入市场。对于客户来说,就是合理的选择一款自己合适的仪器,不要人云亦云。
钢研纳克目前的仪器都是以CCD技术为主,COMS技术已经完善,并已推出上市,敬请期待。

全谱火花直读光谱仪的作用是什么?分析金属?我们为什么要分析金属?单纯为了知道每个元素的含量吗?当然不是。
不同含量的金属有不同的物理特性。各种金属小伙伴的屈服强度,延伸率,抗压轻度等等都不同,那么它们都将会运用在不同的领域中,分配到不同的岗位中去。
比如铁与钢,在中,铁是含碳量比较高的,比较脆的,断面和切口一般是灰色的金属。
钢呢?含碳量比较少,一般情况下比较有韧性,它会比较容易,断面一般是银白色的。
在生活中它们一直被混淆,我们日常说的铁丝其实是低碳钢丝。怎么的分辨他们,看碳的含量。前面说到正因为碳的含量不同,所以它们的性质不同,所以一般碳含量小于2.11%的被称为钢,那么反之大于2.11%碳含量黑色金属被称为铁。
把材料的冶炼看做是炼金术,加入各种元素,合成不同性质的金属,但是我们的成品没有那么明显可以看出来成功没有,所以为了进一步对材料进行分析,全谱火花直读光谱仪出现了。当然不只是它,还有很多分析仪器小伙伴出现,比如红外线碳硫分析仪。
但是全谱火花直读光谱仪占据大部分市场,为何?因为他的一些优点让它在客户需求上有较大市场,使得它流通性广。
所以全谱火花直读光谱仪在铸造,冶炼以及其他金属加工企业中必不可少,作为一种分析手段,一下子可以测出多种元素的含量,成为在品质工艺上至关重要的工具。

铝合金是现今运用广泛的金属,它拥有质量轻,耐腐蚀,无毒,可回收,可焊接,导电性好,成形好的优点,为我们提供了无限的便利与未来。本次直读光谱仪常见元素分析的主角是铝合金。
1825年人类研制出几毫克,与其他金属相比,这种金属发现得较晚,在技术上不及其他的金属,但是它却较大地推动了工业文明,尤其是航空的发展。航空铝材是一种**高强度变形铝合金,目前广泛应用于航空工业。
铝合金的纯度影响金属的性能,不同的元素含量有不同的用途,所以我们需要对铝合金进行元素分析,所以我们利用光谱学原理对元素进行分析,**的选择当然是光谱仪,光谱仪能进行全元素分析,这意味着率和**省时。
针对铝合金的铸造,使用光谱仪进行元素分析,大幅度提高产品的性能,产品的强度,硬度,伸长率等都与元素的配比有关。在工艺制作过程中,光谱仪的作用类似于显示器,把所有的元素都展现出来。
随着轻量化时代的到来,铝合金的应用在人工智能,电子等方面越来越广,相对地是,直读光谱仪的应用范围也越来越广,近年来,光谱仪需求在不断增长。

光谱分析仪的术语,你了解几个
CCD:电荷耦合元件。可以称为CCD图像传感器,也叫图像控制器。
样块:测试的金属块状物,有的样块叫做标样。
罗兰圆光学系统:Rowland circle 在凹球面反射镜面上刻划一系列等间距的平行线条构成的反射光栅,它具有分光能力和聚光能力,光谱仪的设计结构。
火花:电极放电发生跃迁,光谱仪有高压电,发出白光。作用是激发
基体效应:基体效应就是共存元素对被测元素的影响
工作原理:样品经过电弧或火花放电激发成原子蒸汽,蒸汽中原子或离子被激发后产生发射光谱,发射光谱经光导纤维进入光谱仪分光室色散成各光谱波段,根据每个元素发射波长范围,通过光电管测量每个元素的谱线,每种元素发射光谱谱线强度正比于样品中该元素含量,通过内部预制校正曲线可以测定含量,直接以百分比浓度显示。
光栅:光学器件,作用是分光。把光谱折射出来
激发系统:使用高能预燃低压火花激发光,使样品原子化,并使原子发射光谱
光学系统:对光信号进行处理,使用光栅等进行分光。
测控系统:测量代表各元素的特征谱线强度,通过各种手段,将谱线的光强信号转化为电脑能够识别的数字电信号。控制整个仪器正常运作
软件处理系统:对电脑接收到的各通道的光,进行运算,得到稳定准确的样品含量。
http://xjr003.cn.b2b168.com