**等离子体ICP光谱报价 电感耦合等离子体光谱分析仪
  • **等离子体ICP光谱报价 电感耦合等离子体光谱分析仪
  • **等离子体ICP光谱报价 电感耦合等离子体光谱分析仪
  • **等离子体ICP光谱报价 电感耦合等离子体光谱分析仪

产品描述

温度控制<0.1℃ 大面积CCD器 测试范围165nm-950nm 光源类型固态光源 品牌钢研纳克
金属镧中铈、镨、钕、镝的ICP-AES法测定与谱线选择
根据GB/T 15677-2010 金属镧的产品标准,不同的牌号金属镧(14030,14025,14020)的稀土杂质分别不得多于0.1%,0.5%,1%。因此需要对金属镧中的稀土杂质元素进行定量分析。由于稀土元素之间的光谱干扰比较严重,因此选择合适的谱线则尤为重要。本文通过对plasma 1000/2000轴向观测和安捷伦700系列的仪器进行比较,选择合适的分析仪器,合适的分析谱线,及测定其检出限及下限。
1 实验部分
1.1 仪器参数及试剂
本次试验采用plasma 1000/2000水平/安捷伦700系列对样品进行试验 ,仪器工作参数见表1-表3.
表1 plasma 2000(水平)测定参数
工作条件 参数
冷却气流量L/min 15
辅助气流量L/min 0.5
载气流量L/min 0.7
射频功率W 1250
曝光时间s 8
观测方向 轴向
氩气纯度 >99.999%
表2 plasma 1000仪器测定参数
工作条件 参数
冷却气流量L/min 18
辅助气流量L/min 0.5
载气流量L/min 0.7
射频功率W 1200
观测方向 径向
氩气纯度 >99.999%
表3 安捷伦700系列测定参数
工作条件 参数
冷却气流量L/min 15
辅助气流量L/min 1.5
载气流量L/min 0.7
射频功率W 1200
观测方向 径向
氩气纯度 >99.999%
1.2 样品处理
称取1g样品,缓慢滴入10ml盐酸,溶解样品,而后补加10ml盐酸,放在加热板上加热20min。
La基体溶解:称取10g氧化镧(La/REO>99.999%)于250ml烧杯中,加入10ml水,缓慢滴入盐酸(反应较为剧烈,滴入时小心)。直至反应完全,放在加热板上加热20min,冷却后转入100ml容量瓶中,定容摇匀。此溶液1ml中含有0.1g氧化镧。
2 结果与讨论
2.1 分析谱线的选择
稀土元素的谱线较为复杂,因此谱线选择尤其重要。谱线选择的时候,需要充分考虑谱线间的干扰。Plasma 1000的谱线图见图1-图9。其中左边的图为Plasma 1000谱图,中间为Plasma 2000谱图,右边谱图为安捷伦700系列谱图。通过比较三种仪器的分析谱图发现,plasma1000的分辨率相对较好,优于plasma 2000及安捷伦700系列。因此选用plasma 1000测定以下元素。同时三种仪器的可选的分析谱线见表4。
表4 谱线选择(红色为推荐谱线)
元素 Plasma1000谱线 Plasma2000(水平)谱线 安捷伦700系列
Ce 413.380/399.924/418.659/446.021 413.380/418.660 446.021/418.659
Nd 406.109/401.225/430.357 --- 430.357
Pr 400.869 --- 400.869
Dy 353.170 353.170 340.780/353.171
图1 镧基体中Ce413.380峰型图
图2 镧基体中Ce399.924峰型图
图3 镧基体中Ce446.021峰型图
图4 镧基体中Ce418.659峰型图
图5 镧基体中Pr400.869
图6 镧基体中Nd406.109
图7 镧基体中Nd401.225
图8 镧基体中Nd430.357
图9 镧基体中Dy353.170
2.2 实际样品的测定
2.2.1溶液系列的配置
取4个100 mL容量瓶,分别加入各待测元素的标准溶液,补加10 mL盐酸,定容,摇匀。此标准溶液系列中各元素质量浓度相当于样品中各元素含量见表5。实际样品按照本文方法进行分析。
表5 标准溶液系列中各元素含量 %
元素 Ce Pr Nd Dy
空白 La基体+0 La基体+0 La基体+0 La基体+0
标准1 La基体+0.005 La基体+0.005 La基体+0.005 La基体+0.005
标准2 La基体+0.01 La基体+0.01 La基体+0.01 La基体+0.01
标准3 La基体+0.05 La基体+0.05 La基体+0.05 La基体+0.05
2.2.2校准曲线和检出限
测定plasma1000的检出限及测定下限。按照仪器设定的工作条件对标准溶液系列进行测定。在仪器工作条件下对标准溶液系列的空白溶液连续测定11次,以3倍标准偏差计算方法中各待测元素检出限,以30倍标准偏差计算方法中各待测元素的测定下限,结果见表5。
表5线性回归方程和检出限
元素 线性范围
/(%) 线性回归方程 相关系数 检出限
/(%) 测定下限
(%)
Ce 0.005-0.05 Y=677070x+683.59 0.9999 0.0003 0.003
Pr 0.005-0.05 Y=267204x-147.57 0.9999 0.0009 0.009
Nd 0.005-0.05 Y=819298x+1793 0.9999 0.0003 0.003
Dy 0.005-0.05 Y=5125968x-1109.7 0.9999 0.0003 0.003
2.2.3 测定结果
实际样品按照本文方法进行分析,其结果见表6.
表6 实际样品分析结果 %
元素 ICP-AES
Ce 0.0422
Pr 0.0034
Nd 0.0078
Dy <0.001
3 结论
本文通过对plasma 1000/2000轴向观测和安捷伦700系列的仪器进行比较,选择合适的分析仪器,认为plasma1000的分辨率相对较好,优于plasma 2000及安捷伦700系列合适的分析谱线, plasma 1000的测定下限在0.003%-0.009%之间。可以为金属镧中的稀土元素提供依据。
**等离子体ICP光谱报价
如何选择合适的ICP-OES
用户可以根据分析对象选择适合自己的观测方式的ICP类型:
高分辨单扫描:plasma1000(适合需要高分辨的钨钼钽铌、稀土等基体复杂分析)
全谱径向直读:plasma2000(适合地质、冶金等基体复杂物质分析)
全谱双向观测:plasma3000(适合地质、冶金分析及环保、水质等低含量分析)
根据进样类型配置不同附件:
MEINHARD同心雾化器、氢化物发生器、**进样系统、耐高盐、耐氢氟酸系统
选择ICP-OES分析前提:
1、样品的含量应该符合其灵敏度要求(含量一般为μg/mL、μg/L级别);
2、样品前处理彻底和稳定;
3、干扰性小,并能利用方法排除;
4、方法各种参数的选择和优化;
5、进行正确性和精密性等试验.
**等离子体ICP光谱报价
钢研纳克高分辨率时序扫描型ICP光谱仪测定镧铈合金中15种稀土元素
摘 要 利用钢研纳克技术有限公司研制的光栅刻线为3600条/mm的高分辨率时序扫描型ICP-AES发射光谱仪研究了镧铈基体对其中13种稀土元素分析线的光谱干扰情况。给出了镧铈合金中35%镧和65%铈作为基体时, 其中13 种稀土元素的分析谱线,并估算了各元素分析谱线的检出限,解决了以镧铈为基体材料的元素含量准确的难题。
关键词 ICP-AES,稀土;镧铈合金;光谱干扰
稀土镧铈合金主要用做贮氢合金材料和钢材添加剂,其主要功能为:1) 用LC/LPC金属作为添加剂提升金属材料综合性能方面的应用;2) 以LC/LPC金属作为合金主要成分研发高性能合金材料产品;3) LaCe/LaPrCe 作为合金化合物在镍氢电极负极材料方面的应用。ICP-AES法测定镧铈合金中的稀土元素时,由于ICP 相当强的激发能力, 使得可观测的稀土元素原子发射光谱比电弧或火花光源更加丰富,因此全面了解各元素之间的光谱干扰信息是ICP-AES法准确测定稀土元素的重要基础。
近年来,国内一些研究小组利用光栅刻线数为3600条/mm的高分辨率ICP-AES发射光谱仪, 系统地研究了十五种稀土元素作为基体时对其他稀土元素分析线的干扰轮廓[ 1-6]。镧铈合金由于受镧和铈双重基体的影响,光谱干扰更加复杂。本文采用钢研纳克技术有限公司的Plasma-1000型高分辨率时序扫描式ICP-AES光谱仪并在文献[1]-[6]的基础上,选择受镧或铈干扰小或干扰较小的谱线作为考察对象,考察了镧铈合金中各稀土元素受镧铈基体干扰的情况,给出了35%镧和65%的铈作为基体时, 其他13种稀土元素的分析线,并估算了此条件下各元素的检出限。
1 实验部分
1.1 仪器及参数
Plasma 1000 型顺序扫描发射光谱仪(纳克) , Czermy-Turner光学系统, 焦矩: 1000mm,光栅有效面积110×110,光栅刻线: 3600 条/mm, 倒线色散率和分辨率: 0.22 nm/mm,0. 0066 nm,入射狭缝20 μm, 出射狭缝20 μm。高频电源: 频率27. 12 MHz、入射功率1. 15 kW。工作气体: 氩气纯度> 99. 95%, 冷却气15 L/ min、等离子气1. 2 L/min、载气0.5 L/ min, 冲洗气3. 5 L/min, 观察高度15.0 mm。
1. 2 主要试剂与稀土标准系列
盐酸、硝酸均为AR级;稀土标准溶液:1 mg/mL,盐酸或硝酸介质;实验用水为蒸馏水。
1.3实验方法
1.3.1 准确称取0.1000 g试样于150 mL烧杯中,加盐酸10 mL,低温电热炉上加热溶解样品,待样品溶解完后,冷却至室温,转移到100 mL容量瓶,加水定容至刻度,此溶液用于测量除镧铈以外其他稀土元素;
1.3.2 准确分取20 mL 1.3.1的原溶液于100 mL容量瓶中,补加盐酸5 mL,加水定容至刻度,此溶液用于测量镧和铈元素。
1.3.3 标准曲线
除镧铈以外其它元素标准曲线:在五个100 mL容量瓶中,分别加入35 mg 99.99%的镧基体和65 mg 99.99%的铈基体,加盐酸10 mL,并分别加入10、50、100、500μg的Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tu、Yb、Lu、Y等稀土元素的混合标液,用水定容到刻度;
镧和铈标准曲线:在五个100 mL容量瓶中,分别加入10 mL盐酸,然后再分别加入0、12、13、14、15 mL的铈标准溶液(1 mg/mL)和0、7、6、5、4 mL的镧标准溶液(1 mg/mL),用水定容至刻度。
2 结果与讨论
2.1 分析谱线的选择
根据文献[1]-[6]中提供的纯溶液中杂质元素谱线的检出限、信背比以及不同稀土基体时的背景相当浓度值和扫描图综合考虑, 选择出适合镧铈基体中的稀土元素分析的分析线作为本实验的待考察谱线,见表1。实验结果表明,Tm、Nd、Tb在考察的范围内,没有找到特别合适的谱线,因此选择受两种基体干扰相对较小的谱线。
表1 Plasma 1000 谱线
元素 谱线/nm 元素 谱线/nm
La 333.749 Er 323.058; 337.271; 349.910; 369.265
Ce 413.380; 418.660 Tm 313.126; 342.508
Pr 414.311; 417.939; 422. 535 Yb 289.138; 328.937
Nd 401.225; 406.109; 430.358 Lu 261.542
Sm 359.260; 442.434 Y 324.228; 371.030; 377.433
Eu 381.967; 412.970 Dy 353.170
Gd 335.047; 336.223 Ho 345.600
Tb 350.917; 367.635
表2 镧铈合金中各稀土元素的分析谱线
元素 分析线/nm 元素 分析线/nm
La 333.749 Er 349.910 369.265
Ce 413.380 418.660 Tm 313.126
Pr 422.535 Yb 328.937
Nd 406.109 430.358 Lu 261.542
Sm 359.260 Y 324.228; 377.433
Eu 381.967 Dy 353.170
Gd 335.047 Ho 345.600
Tb 350.917; 367.635
2.2 检出限
在表2所列的仪器条件下测定了15 个稀土元素在镨钕基体中对所选的分析线按文献[ 7]估算了检出限。估算检出限公式如下:
,式中I n/I b为分析物的净强度和背景强度比; C为产生I n/I b 的分析物浓度。
表 3 镧铈合金中各稀土元素谱线检出限
元素 分析线/nm Plasma100检出限
/(g/mL)
La 333.749;
379.478 0.0050
0.0035
Ce 413.380
418.660 0.015
0.019
Pr 422. 535 0.015
Nd 406.109
430.358 0.01
0.01
Sm 359.260 0.0075
Eu 381.967 0.001
Gd 310.050
335.047 0.0058
0.005
Tb 350.917
367.635 0.006
0.02
Er 337.271
369.265 0.003
0.0038
Tm 313.126 0.0025
Yb 328.937 0.0006
Lu 261.542 0.0013
Y 324.228
377.433 0.0028
0.0025
Dy 353.170 0.0024
Ho 345.600 0.005
3 结论
1)本工作就纳克生产的高分辨率光谱仪对稀土元素的分析性能和光谱干扰研究结果表明: 与普通分辨率光谱仪相比, 背景相当浓度值和光谱干扰程度显著降低, 因而提高了检出能力和分析结果的准确度,在以稀土为主要共存物的痕量稀土分析中具有明显优势。
2)研究了镧铈基体对其他13个稀土元素分析线的光谱干扰情况。给出了35%镧和65%的铈作为基体时, 13种稀土元素的分析线,并估算了此条件下各元素的检出限,为ICP-AES法准确测定镧铈合金中13种稀土元素奠定了基础。
参考文献:
1 李冰,尹明. 高分辨型电感耦合等离子体发射光谱仪测定稀土元素的光谱干扰研究I. 铈镨和钕基体[J]. 分析测试仪器通讯,2(6):63-81.
2 谷胜,杨赸原,李冰. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究 Ⅱ. 钐基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),1997, 17(2):8 8 -94.
3 应海,杨原,张志刚. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:Ⅲ镝基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),1998, 18(5):559-564.
4 孙振华,孙大海,谷胜. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:VI 铕、钆基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2000, 20(1):49-54.
5 孙振华,谷胜,孙大海. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES研究:V 镥、铥、钇、镱基体对其他稀土元素的光谱干扰[J]. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2000, 20(2):222-228.
6 孙振华,李冰, 孙大海. 稀土元素原子发射光谱及其谱线干扰的高分辨率ICP-AES 研究:VI 镧、铽、钬、铒基体对其他稀土元素的光谱干扰. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2001, 21(1):57-61.
7 Winge R K, Fassel V A, Peterson V J, etal. Inductively Coupled Plasma Atomic Emission Spectroscopy[M]. An Atlas of Spectral Information. Amsterdam: Elsevier, 1985.
**等离子体ICP光谱报价
电感耦合等离子体原子发射光谱法测定废弃稀土荧光粉中的镧、铈、铽、镝、钇、钆、铕
钢研纳克技术有限公司, 北京 100094
摘要:研究了利用电感耦合等离子体发射光谱法测定废弃稀土荧光粉中镧、铈、铽、镝、钇、钆、铕等元素的配分的量。考察了共存元素的干扰情况,选定了各元素的分析谱线。结果表明,各元素上、下限含量的回收率在94%~104%之间。Y2O3、Gd2O3测量范围为0.01%~98%;CeO2为0.01%~20%;Eu2O3、Tb4O7、Dy2O3、La2O3为0.01%~10%。
关键词:电感耦合等离子体发射光谱法;废弃稀土荧光粉;镧;铈;铽
稀土是**的重要战略资源,已广泛应用于电子信息、冶金机械、石油化工、能源环境、***等多个领域。我国是稀土资源丰富的国家,但随着我国国内稀土消费需求增加、大量廉价出口和长期掠夺式开采等因素的影响,目前我国稀土资源已由20世纪70年代占世界总量的74%,下降到80年代的69%,90年代末的43%,截止到2009年我国稀土资源仅占**36.52%。而另一方面,近年来我国稀土发光材料等典型稀土产品的报废量却在日益增加,仅2010年我国废弃稀土荧光粉产生量就达8000吨,利用潜力巨大,一些家电回收和环保企业已建立一些回收利用生产线。就废弃稀土荧光粉的来源而言,目前主要为废弃稀土荧光灯和废弃阴极射线管显示器荧光粉两大类。其可能含有的稀土元素、其他化学元素以及回收过程可能引入的部分杂质元素,总数可达到十几种,如Y、Eu、Tb、Ce、La、Gd、Dy、Al、Mg、Ca、Ba、Zn、Mn、S、B、Si、P、Pb、Hg、Cd等,化学组成异常复杂。且因不同废旧产品的规格质量、使用状态、回收及存储方式不尽相同,各种废弃稀土荧光粉中稀土元素的种类、含量及其存在形式均可能存在较大差异,造成废旧产品的潜在利用价值判断、回收交易和后续利用等环节存在困难。这就要求从源头上制定废弃稀土荧光粉的化学分析方法,从而准确获得各种废弃稀土荧光粉中各种稀土元素氧化物的含量,为其回收交易和后续利用提供科学的理论依据。鉴于现有的分析标准方法普遍采用酸浸方法进行预处理,不能使废弃稀土荧光灯和废弃阴极射线管显示器荧光粉获得完全溶解,需要探索新的预处理方法,并以此为基础制定相应的分析方法标准。
钢研纳克公司生产的高分辨率顺序扫描型plasma-1000型ICP-AES光谱仪具有灵敏度高、检出限低、多元素同时测定的特点,本文采用该ICP-AES光谱仪,成功测定了废弃稀土中的La、Ce、Tb、Dy、Y、Gd、Eu,也为已经发布的ICP-AES法测定废弃稀土荧光粉中的Pb、Cd、Hg标准奠定了基础。
1 实验部分
1.1仪器及主要参数
仪器:Plasma 1000(钢研纳克技术有限公司):RF功率:1.2kW;冷却气流量:14 L/min;辅助气流量:1.2 L/min;载气流量:0.7L/min;观测高度:11mm。
1.2 试剂
盐酸(优级纯);水为二次去离子水;La、Ce、Tb、Dy、Y、Gd、Eu标液。
1.3 校准曲线的配制
在七个100mL容量瓶中,分别加入钇、铕、铈、铽、镧、镝、以及钆标准溶液,配制成工作曲线系列。校准曲线浓度见表1。
1.4 试样溶液的制备
1.4.1 将试料混合均匀,以保证试料的均匀性。
1.4.2 根据废弃稀土荧光粉中稀土氧化物量,称量试样溶解并稀释至相应体积的容量瓶中,使测定溶液的稀土浓度为0.4mg/mL(精确至0.0001g)。
2 结果讨论
2.1 分析线波长的选择
试验对被测元素的多条谱线进行了考察,通过绘制系列标准的轮廓图和工作曲线图,分析各条谱线的受稀土元素的干扰情况、工作曲线的相关系数、信噪比和强度,选择了合适的分析谱线,见表2。
表2 待测元素的分析谱线
元素 La Ce Dy Gd Eu Y Tb
波长/ nm 408.672 333.749 418.660 446.021 353.170 335.047 420.505 381.967 371.030 377.433 350.917 367.635
2.2 共存元素干扰情况
2.2.1 稀土杂质的干扰
在选定的分析线波长下,50µg/mL的每一共存稀土元素对各被测元素产生的干扰量均小于0.10µg/mL。可视为共存元素间无干扰(见表3)。
2.2.2 非稀土杂质的干扰
由于废弃稀土荧光粉中有一定含量的酸溶性非稀土杂质,将8个非稀土杂质Fe(10g/mL)、Ca(10μg/mL)、Al(10μg/mL)、Mg(10μg/mL)、Mn(10μg/mL)、Ni(10μg/mL)、Cu(10μg/mL)、Zn(10μg/mL)的混合液进行测定,产生的干扰量均小于0.10µg/mL。可视为共存元素间无干扰(见表3)。
表3 共存元素对被测元素各条谱线的干扰量
干扰元素 对各待测元素的干扰量/(µg/mL)
La333.749 La408.672 Ce418.660 Ce446.021 Dy353.170 Gd335.047
Ba 0.0031 0.0025 0.019 0.0073 0.0025 0
Zn 0.0078 0.0075 0.014 0.0044 0.013 0.0012
Fe 0.0072 0.0067 0.012 0.00065 0.012 0
Ca 0.026 0.0041 0.014 0 0.011 0
Mg 0.0049 0.0034 0.017 0 0.011 0
Mn 0.0057 0.0033 0.015 0.032 0.0094 0
Ni 0.0033 0.0019 0.014 0 0.013 0
La - - 0.016 0 0.013 0
Ce 0.012 0.075 - - 0.009 0
Tb 0.049 0.059 0.0272 0.00012 0 0
Dy 0.0037 0.0021 0 0.116 - 0
Y 0.019 0.02 0.075 0.0083 0.026 0
Gd 0.0018 0.0034 0.015 0 0.012 -
Eu 0.032 0.0029 0.044 0.079 0.018 0.013
Al 0.0028 0.0017 0.015 0 0.012 0.0045
干扰元素 对待测元素的干扰量/(µg/mL)
Eu420.505 Eu381.967 Y371.030 Y377.433 Tb350.917 Tb367.635
Ba 0 0 0 0 0.0033 0.0019
Zn 0 0 0.0031 0.0035 0.0032 0.0018
Fe 0 0 0.0044 0.0048 0.0036 0.025
Ca 0 0 0 0 0 0
Mg 0 0 0 0 0 0.0018
Mn 0 0 0 0 0.0003 0.0021
Ni 0 0 0 0 0 0.0016
La 0 0 0 0 0 0.0056
Ce 0 0 0 0 0.025 0
Tb 0 0 0 0 - -
Dy 0 0 0.012 0.0043 0.151 0.874
Y 0 0 - - 0 0.037
Gd 0 0 0.011 0.0044 0.079 0.023
Eu - - 0.041 0.033 0.03 0.0031
Al 0 0 0.014 0.014 0.006 0.0054
2.3 溶样酸的选择
对同一样品分别用稀盐酸、稀硝酸、进行分解,测定各被测元素含量,结果无差别。但考虑到硅等元素的测定时,需选择盐酸酸介质,故选择用稀盐酸溶解样品。
2.4 仪器功率的选择
试验考察功率对测定的影响,在功率为1000W、1100W、1200W、1300W和1400W时对同一样品进行测定,各谱线的发射强度随着功率的提高变化不大,故选定仪器的功率为1200W。
2.5 测定范围的确定
在本方法要求的测定范围的上下限处完成标加回收试验,试验结果满意,详见2.7中表4的回收率实验结果。
2.6精密度试验
对1号样品分别进行连续11次的测定,精密度结果见表3。由表可见,各样品中每个被测元素的精密度均小于0.5%,满足要求。
表3 精密度试验
样品 La Ce Dy Gd Eu Y Tb
1# ≤0.01 0.013 ≤0.01 ≤0.01 0.526 11.88 ≤0.01
≤0.01 0.013 ≤0.01 ≤0.01 0.534 11.88 ≤0.01
≤0.01 0.013 ≤0.01 ≤0.01 0.53 11.90 ≤0.01
≤0.01 0.014 ≤0.01 ≤0.01 0.526 11.85 ≤0.01
≤0.01 0.013 ≤0.01 ≤0.01 0.534 11.88 ≤0.01
≤0.01 0.014 ≤0.01 ≤0.01 0.538 11.83 ≤0.01
≤0.01 0.013 ≤0.01 ≤0.01 0.526 11.88 ≤0.01
≤0.01 0.013 ≤0.01 ≤0.01 0.534 11.92 ≤0.01
≤0.01 0.013 ≤0.01 ≤0.01 0.524 11.85 ≤0.01
≤0.01 0.012 ≤0.01 ≤0.01 0.536 11.95 ≤0.01
≤0.01 0.013 ≤0.01 ≤0.01 0.524 11.88 ≤0.01
平均值/% ≤0.01 0.013 ≤0.01 ≤0.01 0.53 11.88 ≤0.01
RSD/% - 0.457 - - 0.098 0.281 -
2.7 加标回收试验
在选定的测定条件下,于Y、Eu、Ce、Tb、La、Dy、Gd七个元素的含量上、下限进行标准加入回收实验。回收率结果见表4。由表可见,各元素回收率在94~104 %之间。
表4 回收率试验
元素 加入量/(μg/mL) 回收率/% 加入量/(mg/mL) 回收率/%
La 0.1 95.2 0.1 97.2
Ce 0.1 103.5 0.2 100.1
Dy 0.1 96.7 0.1 94.3
Gd 0.1 95.6 0.98 99.8
Eu 0.1 99.5 0.1 97.9
Y 0.1 100.2 0.98 98.5
Tb 0.1 100.5 0.1 96.5
2.8对照实验
在选定的测定条件下,将3个实际样品的测定结果与其他方法得到的参考值进行比对,对照结果见表5,结果表明,本法测定结果正确、可靠。
表5 对照试验结果
元素 Y Eu Ce Tb La Dy Gd
本法 11.92 0.531 0.013 ≤0.01 ≤0.01 ≤0.01 ≤0.01
参考值 11.88 0.524 0.012 ≤0.01 ≤0.01 ≤0.01 ≤0.01
本法 24.36 1.40 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01
参考值 24.31 1.36 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01
本法 30.60 1.82 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01
参考值 30.54 1.79 ≤0.01 ≤0.01 ≤0.01 ≤0.01 ≤0.01
3 结论
本方法利用钢研纳克生产的电感耦合等离子体发射光谱仪测定了废弃稀土荧光粉中七个稀土氧化物配分的量,通过加标回收、精密度实验及和其他方法参考值的比对,确定RSD均小于0.5%,加标回收率在94~104%之间,表明该法溶样简单、准确性好,可用来快速测定废弃稀土荧光粉中七个稀土氧化物配分的量。本实验工作也为国家标准方法的研制奠定了基础。
-/gbahabd/-

http://xjr003.cn.b2b168.com

产品推荐